检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String(Base64.encodeBase64(data)); } } 使用base64编码方式,需要在模型推理代码中增加对请求体解码的代码。 输入为文本格式(json类型) // Package name of the demo. package com.apig
查询数据集的样本列表,不支持表格类型数据集。 dataset.list_samples(version_id=None, offset=None, limit=None) 示例代码 示例一:查询数据集样本列表 from modelarts.session import Session from modelarts.dataset
是否必选 类型 描述 code_dir 是 String 训练作业的代码目录,是一个OBS路径,需要以"obs:/"开头,如"obs://xx/yy/"。 boot_file 是 String 训练作业的代码启动文件,需要在代码目录下,可填写相对路径,如"boot_file.py",也可
code_dir+boot_file:取训练作业的代码目录和启动文件。 name String 算法名称。 subscription_id String 订阅算法的订阅ID。 item_version_id String 订阅算法的版本。 code_dir String 训练作业的代码目录。如:“/usr/
客户PFS的挂载目录。 /cache 否 裸机规格时支持,用于挂载宿主机NVMe的硬盘。 /train-worker1-log 否 兼容训练任务调试过程。 /dev/shm 否 用于PyTorch引擎加速。 /modelarts 是 / /etc/secret-volume 是 / /etc/sudoers
查询当前数据集的所有标注任务列表。 dataset.get_label_tasks(is_workforce_task=False, **kwargs) 示例代码 示例一:查询数据集下所有的标注任务,根据标注任务创建时间降序排序。 from modelarts.session import Session
查询引擎规格列表 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 from modelarts.session import Session from modelarts.estimatorV2
dataset.create_label_task(self, task_name=None, task_type=None, **kwargs) 示例代码 示例一:基于图像类型的数据集创建物体检测标注任务。 from modelarts.session import Session from
ma-user:ma-group ${container_work_dir} 此步骤可能需要密码或root权限 Step5 下载代码安装环境 下载华为侧插件代码包AscendCloud-AIGC-6.3.908-xxx.zip文件,获取路径参见表1。 unzip AscendCloud-AIGC-6
用户AK-SK认证模式 本模式支持OBS管理、训练管理、模型管理、服务管理模块的鉴权。 示例代码 1 2 from modelarts.session import Session session = Session(access_key='***',secret_key='***'
1” 代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/pytorch/demo-code/”,训练代码会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,“demo-code”为OBS存放代码路径的最后一级目录,可以根据实际修改。
8或950808)与我们联系。 常见问题 为什么要下线旧版自动学习? ModelArts自动学习是帮助用户实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。ModelArts团队对自动学习模块进行了架构与前端页面的升级,新版自动学习已于2023年6月上线,并已作为主入口面
删除训练作业 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式一:根据指定的job_id删除。 from modelarts.session import Session from
当需要从训练中断的位置接续训练,只需要加载checkpoint,并用checkpoint信息初始化训练状态即可。用户需要在代码里加上reload ckpt的代码,使能读取前一次训练保存的预训练模型。 ModelArts Standard中如何实现断点续训练 在ModelArts S
1” 代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/pytorch/demo-code/”,训练代码会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,“demo-code”为OBS存放代码路径的最后一级目录,可以根据实际修改。
如果文件较大,可以保存成多个“.tar”包,在入口脚本中调用多进程进行并行解压数据。不建议把散文件保存到OBS上,这样会导致下载数据很慢。 在训练作业中,使用如下代码进行“.tar”包解压: import moxing as mox import os mox.file.copy_parallel("o
推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
访问,这样可使得学生可独立完成在ModelArts上的实验。 企业场景:管理者可创建用于生产任务的工作空间并限制仅让运维人员使用,用于日常调试的工作空间并限制仅让开发人员使用。通过这种方式让不同的企业角色只能在指定工作空间下使用资源。 目前工作空间功能是“受邀开通”状态,作为企业
获取地址 AscendCloud-6.3.909-xxx.zip 包含 三方大模型训练和推理代码包:AscendCloud-LLM AIGC代码包:AscendCloud-AIGC CV代码包:AscendCloud-CV 算子依赖包:AscendCloud-OPP 获取路径:Support-E
下载华为侧插件代码包AscendCloud-AIGC-6.3.908-xxx.zip文件,获取路径参见表1。本案例使用的是解压到子目录aigc_train->torch_npu->diffusers的所有文件,将diffusers整个目录上传到宿主机上。 依赖的插件代码包、模型包和