检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
将当前数据集的样本导出到指定的OBS路径下。仅支持图像分类、物体检测、图像分割和自由格式数据集。 dataset.export_data(path) 示例代码 导出数据集到OBS目录 from modelarts.session import Session from modelarts.dataset
本教程案例是基于ModelArts Lite DevServer运行的,需要购买并开通DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.908-xxx.zip和算子包AscendCloud-OPP-6.3.908-xxx
6-linux-arm64.tar.gz # 将程序解压至运行目录中 tar -zxf nerdctl-1.7.6-linux-arm64.tar.gz -C /usr/bin/ # 查看是否安装成功 nerdctl -v 安装buildkit工具。buildkit是从Docker从公司开源出来
本教程案例是基于ModelArts Lite DevServer运行的,需要购买并开通DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。
查询数据集版本详情 根据版本ID查询数据集指定版本的详细信息。 dataset.get_version_info(version_id) 示例代码 查询数据集指定版本的详细信息 from modelarts.session import Session from modelarts.dataset
新建文件夹“self-define-images”,在该文件夹下编写自定义镜像的“Dockerfile”文件和应用服务代码“test_app.py”。本样例代码中,应用服务代码采用了flask框架。 文件结构如下所示 self-define-images/ --Dockerfile
|——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ #
|——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ #
ief:iefInstance:list ief:node:list 通过IEF部署边缘服务。 按需配置。 操作步骤 本案例场景为在开发环境中构建并调试推理镜像,在Notebook中制作自定义镜像,然后将调试完成的镜像导入ModelArts的AI应用管理中,并部署上线。 使用主用户账号登录管理控制台,单击右上角用户名
新建文件夹“self-define-images”,在该文件夹下编写自定义镜像的“Dockerfile”文件和应用服务代码“test_app.py”。本样例代码中,应用服务代码采用了flask框架。 文件结构如下所示 self-define-images/ --Dockerfile
CANN cann_8.0.rc2 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.906-xxx.zip软件包中的AscendCloud-AIGC-6.3.906-xxx.zip 说明:
905-xxx.zip文件中的ascendcloud-aigc-poc-sdxl-lora-train.tar.gz代码包。解压后上传到宿主机上。 依赖的插件代码包、模型包和数据集存放在宿主机上的本地目录结构如下,供参考。 [root@devserver-ei-cto-office-ae06cae7-tmp1216
桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook 本案例需要创建一个Notebook,以便能够通过它访问SFS
可以通过以下方式解决问题: 缩小预测请求数量看是否问题还复现,如果不复现是因为负载过大导致服务进程退出,需要扩容实例数量或者提升规格。 推理代码本身存在错误,请排查推理代码解决。 父主题: 服务预测
云上迁移适配故障 无法导入模块 训练作业日志中提示“No module named .*” 如何安装第三方包,安装报错的处理方法 下载代码目录失败 训练作业日志中提示“No such file or directory” 训练过程中无法找到so文件 ModelArts训练作业无法解析参数,日志报错
s前检查账号状态,账号不能处于欠费或冻结状态。 Step1 创建OBS桶和文件夹 在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。需要创建的文件夹列表如表1所示,示例中的桶名称“test-modelarts” 和文件夹名称均为举例,请替换为用户自定义的名称。 创建O
lab/console查询 前端插件安装目录为:/home/ma-user/.local/share/jupyter/labextensions 后端插件代码安装目录:/home/ma-user/.local/lib/python3.7/site-packages 配置文件目录:/home/ma-user/
BS桶,然后在OBS桶中创建文件夹用于存放数据。 本文档也以将运行代码以及输入输出数据存放OBS为例,请参考创建OBS桶,例如桶名:standard-llama2-13b。并在该桶下创建文件夹目录用于后续存储代码使用,例如:training_data。 创建VPC 虚拟私有云(Virtual
BS桶,然后在OBS桶中创建文件夹用于存放数据。 本文档也以将运行代码以及输入输出数据存放OBS为例,请参考创建OBS桶,例如桶名:standard-llama2-13b。并在该桶下创建文件夹目录用于后续存储代码使用,例如:training_data。 创建VPC 虚拟私有云(Virtual