检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
确认部署在线服务时是否选择了GPU规格。 在customize_service.py中添加一行代码os.system('nvcc -V)查看该镜像的cuda版本(customize_service.py编写指导请见模型推理代码编写说明)。 确认该cuda版本与您安装的mmcv版本是否匹配。 部署时是
版本 driver 23.0.5 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.906-xxx.zip软件包中的AscendCloud-AIGC-6.3.906-xxx.zip 说明:
"dataset_version_id": "2ff0d6ba-c480-45ae-be41-09a8369bfc90", "dataset_id": "38277e62-9e59-48f4-8d89-c8cf41622c24", "data_source":
/cache”目录读取数据,直到训练结束。训练结束以后“/cache”目录的内容会自动被清空。 优化方式 以TensorFlow代码为例。 优化前代码如下所示: 1 2 3 4 ... tf.flags.DEFINE_string('data_url', '', 'dataset
ugging Face权重文件以及训练代码都需要上传至SFS Turbo中。而基于SFS Turbo所执行的训练流程如下: 将SFS Turbo挂载至ECS服务器后,可直接访问SFS Turbo。通过CloudShell远程登录ECS并将代码包上传至SFS Turbo中。 在表1
尽的情况,导致空间不足。 请排查是否使用的是GPU资源。如果使用的是CPU规格的资源,“/cache”与代码目录共用10G,会造成内存不足,请更改为使用GPU资源。 请在代码中添加环境变量来解决。 import os os.system('export TMPDIR=/cache')
d-251168373/software/258923273?idAbsPath=fixnode01%7C23710424%7C251366513%7C22892968%7C251168373 请下载toolkit和对应机器的kernels包,以Snt9B为例则下载“Ascend-cann-toolkit_7
BS桶,然后在OBS桶中创建文件夹用于存放数据。 本文档也以将运行代码以及输入输出数据存放OBS为例,请参考创建OBS桶,例如桶名:standard-llama2-13b。并在该桶下创建文件夹目录用于后续存储代码使用,例如:training_data。 父主题: 准备工作
您可以尝试使用如下方法,从根本上解决错误。 方法1:将Notebook更换为更高规格的资源。 方法2:可以参考如下方法调整代码中的参数,减少内存占用。如果代码调整后仍然出现内存不足的情况,请使用方法1。 调用sklearn方法silhouette_score(addr_1,siteskmeans
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.906-xxx.zip和算子包AscendCloud-OPP-6.3.906-xxx
'images', does not exist in the graph。 处理方法 如果切分了数据集,需要删除推理代码中“Yolov3Service”类中的如下代码: self.model_inputs = {'images': 'images:0'} self.model_outputs
6-linux-arm64.tar.gz # 将程序解压至运行目录中 tar -zxf nerdctl-1.5.0-linux-amd64.tar.gz -C /usr/bin/ # 查看是否安装成功 nerdctl -v 安装buildkit工具。buildkit是从Docker从公司开源出来
通过OBS导入AI应用时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志 通过OBS创建AI应用时,构建日志中提示pip下载包失败 通过自定义镜像创建AI应用失败 导入AI应用后部署服务,提示磁盘不足 创建AI应用成功后,部署服务报错,如何排查代码问题 自定义镜像导入配置运行时依赖无效
精度调优。 确认性能是否满足要求 在推理代码开始结尾处加入时间记录,并打印出推理执行耗时。根据用户需求判断性能是否满足要求,如果不满足可以进行性能调优。 import time start_time = time.time() # 推理代码 end_time = time.time()
训练作业的自定义镜像制作流程 场景一:预置镜像满足ModelArts训练平台约束,但不满足代码依赖的要求,需要额外安装软件包。 具体案例参考使用预置镜像制作自定义镜像用于训练模型。 场景二:已有本地镜像满足代码依赖的要求,但是不满足ModelArts训练平台约束,需要适配。 具体案例参考已
BS桶,然后在OBS桶中创建文件夹用于存放数据。 本文档也以将运行代码以及输入输出数据存放OBS为例,请参考创建OBS桶,例如桶名:standard-llama2-13b。并在该桶下创建文件夹目录用于后续存储代码使用,例如:training_data。 父主题: 准备工作
3495 X-Project-Id project id,用于不同project取token。 否 e9993fc787d94b6c886cbaa340f9c0f4 X-Auth-Token 用户Token,也就是调用获取用户Token接口的响应值,该接口是唯一不需要认证的接口。 否,使用Token认证时必选。
“自动分组”是指先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/datas
BS桶,然后在OBS桶中创建文件夹用于存放数据。 本文档也以将运行代码以及输入输出数据存放OBS为例,请参考创建OBS桶,例如桶名:standard-llama2-13b。并在该桶下创建文件夹目录用于后续存储代码使用,例如:training_data。 父主题: 准备工作
本教程案例是基于ModelArts Lite DevServer运行的,需要购买并开通DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。