检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:如果微调数据很多,从客观上来说越多的数据越能接近真实分布,那么可以使用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。
能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:如果微调数据很多,从客观上来说越多的数据越能接近真实分布,那么可以使用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练
使其在特定任务上表现出色。接下来,我们将深入探讨提示词优化的方法和技巧,帮助您更好地驾驭模型,实现高质量的任务完成。 优化提升词一般可以从以下几个方面开始: 选择合适的提示词模板 根据任务类型选择提示词模板:不同类型的任务可能需要不同类型的提示词。例如,对于文本生成任务,可以使
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于Pangu服务接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息
(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:从工作流响应准确性维度看,本实践可以评估意图识别节点响应意图的准确性。本实践的意图识别节点包含文本翻译意图和其他意图。 文本翻译意图:当用户请
务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。 调用API获取项目ID 项目ID还可通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为“GET
用户可以根据需求灵活划分工作空间,实现资源的有序管理与优化配置,确保各类资源在不同场景中的最大化利用。为进一步优化资源的管理,平台还提供了多种角色权限体系。用户可以根据自身角色从管理者到各模块人员进行不同层级的权限配置,确保每个用户在其指定的工作空间内,拥有合适的访问与操作权限
详见创建自定义数据合成指令。 指令选择完成后,单击“确定”,并配置指令参数。 如图1,展示了预训练文本类数据集的合成指令参数配置示例,该合成任务实现利用预训练文本生成问答对。 图1 预训练文本类数据集合成指令参数配置示例 指令编排完成后,单击右上角“启用调测”,可以对当前编排的指令效果进行预览。
1个推理单元即可部署,4K支持256并发,32K支持256并发。 Pangu-NLP-N1-32K-3.2.36 32K 4K 2025年1月发布的版本,支持32K序列长度训练,4K/32K序列长度推理。全量微调、LoRA微调8个训练单元起训,1个推理单元即可部署,4K支持256并发,32K支持256并发。
部署后的模型可用于后续调用操作。 创建NLP大模型部署任务 查看NLP大模型部署任务详情 查看部署任务的详情,包括部署的模型基本信息、任务日志等。 查看NLP大模型部署任务详情 管理NLP大模型部署任务 可对部署任务执行执行描述、删除等操作。 管理NLP大模型部署任务 调用NLP大模型 使用“能力调测”调用NLP大模型
adamw是一种改进的Adam优化器,增加了权重衰减机制,有效防止过拟合。 数据配置 训练数据 选择训练模型所需的数据集。 验证数据 若选择“从训练数据拆分”,则需进一步配置数据拆分比例。 若选择“从已有数据导入”,则需选择导入的数据集。 资源配置 训练单元 创建当前训练任务所需的训练单元数量。 订阅提醒
导入数据至盘古平台 加工数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、压缩、部署、评测、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。
会先删除旧版本,再进行升级,期间旧版本不可使用。 图1 升级模式 升级配置后,需重新启动该部署任务,升级模式即为重启的方式。 修改部署配置 完成创建NLP大模型部署任务后,可以修改已部署模型的描述信息并升级配置,但不可替换模型。具体步骤如下: 登录ModelArts Studio
会先删除旧版本,再进行升级,期间旧版本不可使用。 图1 升级模式 升级配置后,需重新启动该部署任务,升级模式即为重启的方式。 修改部署配置 完成创建专业大模型部署任务后,可以修改已部署模型的描述信息并升级配置,但不可替换模型。具体步骤如下: 登录ModelArts Studio大
部署指算法部署至平台提供的资源池中。边缘部署指算法部署至客户的边缘设备中(仅支持边缘部署的模型可配置边缘部署)。 部分模型资产支持边缘部署方式,若选择“边缘部署”: 资源池:选择部署模型所需的边缘资源池,创建边缘资源池步骤请详见创建边缘资源池。 CPU:部署需要使用的最小CPU值(物理核)。
上角“创建插件”。 在“创建插件”页面,填写插件名称与插件描述,单击图片可上传插件图标,单击“下一步”。 在“配置信息”页面,参照表1完成信息配置。 表1 插件信息配置说明 参数名称 参数说明 插件URL 插件服务的请求URL地址。 URL协议只支持HTTP和HTTPS。 系统会校验URL地址是否为标准的URL格式。
查看NLP大模型部署任务详情 部署任务创建成功后,可以查看大模型部署任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建NLP大模型部署任务后,可以查看模型的部署状态。
查看专业大模型部署任务详情 部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建专业大模型部署任务后,可以查看模型的部署状态。