检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。
128 24 chatglm3-6b 1 64 1 128 25 glm-4-9b 1 32 1 128 26 baichuan2-7b 1 8 1 32 27 baichuan2-13b 2 4 1 4 28 yi-6b 1 64 1 128 29 yi-9b 1 32 1 64
128 24 chatglm3-6b 1 64 1 128 25 glm-4-9b 1 32 1 128 26 baichuan2-7b 1 8 1 32 27 baichuan2-13b 2 4 1 4 28 yi-6b 1 64 1 128 29 yi-9b 1 32 1 64
在运行finetune_ds.sh 时遇到报错 在运行finetune_ds.sh 时遇到报错 pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig sta
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口 原因分析 未安装VS Code或者安装版本过低。 解决方法 下载并安装VS Code(Windows用户请单击“Win”,其他用户请单击“其他”下载),安装完成后单击“刷新”完成连接。
从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_64架构的主机,操作系统ubuntu-18
预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/${用户自定义的数据集路径和名称} 原始数据集的存放路径。 TOKENIZER_PATH
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40
加载故障快恢路径) 必须为空,否则此参数无效断点续训失效。 如果就是使用最新的训练权重进行断点续训(暂停+启动场景),那么可以同时指定train_auto_resume =1和 ${user_converted_ckpt_path}训练过程的权重保存路径,加载路径一致。 父主题:
加载故障快恢路径) 必须为空,否则此参数无效断点续训失效。 如果就是使用最新的训练权重进行断点续训(暂停+启动场景),那么可以同时指定train_auto_resume =1和 ${user_converted_ckpt_path}训练过程的权重保存路径,加载路径一致。 父主题:
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40
该特性。 投机推理端到端推理示例 以llama-2-13b-chat-hf模型作为LLM大模型,llama1.1b作为小模型,启用openai接口服务为例。 使用下面命令启动推理服务。 base_model=/path/to/base_model spec_model=/path/to/spec_model
步骤四:执行训练 安装完成后,执行: accelerate launch -m --mixed_precision=bf16 eagle.train.main \ --tmpdir [path of data] \ --cpdir [path of checkpoints] \ --configpath
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40
Git下载代码时报错 在执行scripts/install.sh安装命令或使用Dockerfile构建镜像时,如遇到git下载代码出现以下类似的报错信息,关闭git验证即可。 报错信息: fatal: unable to access 'https://gitee.com/ascend/ModelLink
预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/${用户自定义的数据集路径和名称} 原始数据集的存放路径。 TOKENIZER_PATH
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。