检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
得信赖的可信AI服务。 产品列表 增值税发票识别 识别增值税发票关键字段信息,结构化输出结果。支持图片及PDF、OFD文档识别。 机动车销售发票识别 识别机动车销售发票关键字段信息,结构化输出结果 出租车发票识别 支持识别全国各主要城市的出租车票的全字段信息识别 火车票识别 支持
编辑训练代码(WebIDE) 支持使用WebIDE开发环境编辑代码。 可选择下述一种方式,进入WebIDE开发环境编辑代码: 在“模型训练”菜单页面,“开发环境”为WebIDE环境的情况下,单击模型训练工程所在行的。 在“模型训练”菜单页面,单击模型训练工程所在行,进入详情界面。
监控,识别可疑房间并进行预警。 2. 在线商城:智能审核商家/用户上传图像,高效识别并预警不合规图片,防止涉黄、涉暴、涉政敏感类图像发布,降低人工审核成本和业务违规风险。 3. 网站论坛:不合规图片的识别和处理是用户原创内容(UGC)类网站的重点工作,基于内容审核,可以识别并预警
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-
sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_da
训练作业卡死检测 什么是训练作业卡死检测 训练作业在运行中可能会因为某些未知原因导致作业卡死,如果不能及时发现,就会导致无法及时释放资源,从而造成极大的资源浪费。为了节省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展
件断点来看当时的情况?判断是weights的问题,还是数据的问题?而且框架应该会提供更加完善的sdk,例如tf board这种。 字节兄:做算法的喜欢把软件当成黑盒来用,换个参数调包可能就好了,做工程的喜欢各种抽象设计,一个小功能要排期两周。
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-
数据准备:准备包含干净图像和添加噪声后的训练数据集。 模型构建:定义DnCNN模型的网络结构。 损失函数定义:选择合适的损失函数,通常使用均方误差(MSE)损失。 优化器选择:选择优化算法进行模型参数的优化,如Adam优化器。 模型训练:对DnCNN模型进行训练,并调整参数以最小化损失函数。 模型评估:使用测试集评估训练后的模型性能。
查看训练作业日志 训练日志定义 训练日志用于记录训练作业运行过程和异常信息,为快速定位作业运行中出现的问题提供详细信息。用户代码中的标准输出、标准错误信息会在训练日志中呈现。在ModelArts中训练作业遇到问题时,可首先查看日志,多数场景下的问题可以通过日志报错信息直接定位。
查看训练作业事件 训练作业的(从用户可看见训练作业开始)整个生命周期中,每一个关键事件点在系统后台均有记录,用户可随时在对应训练作业的详情页面进行查看。 方便用户更清楚的了解训练作业运行过程,遇到任务异常时,更加准确的排查定位问题。当前支持的作业事件如下所示: 训练作业创建成功 训练作业创建失败报错:
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-
查看训练作业资源占用情况 约束限制 训练作业的资源占用情况系统会自动保存30天,过期会被清除。 如何查看训练作业资源使用详情 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。 在训练作业详情页面,单
进入导入模型页面,参考如下说明填写关键参数。 “元模型来源”:选择“从训练中选择”。然后在“选择训练作业”右侧下拉框中选择上一步创建的训练作业。 图9 从训练中选择模型点击放大 模型导入参数填
大规模模型训练涉及多GPU时的并行、通讯以及模型过大等问题。并行方式对于n个GPU数据并行:不同的GPU输入不同的数据,运行相同的完整的模型。模型并行:不同的GPU运行模型的不同部分,比如多层网络的不同层;如果模型能够放进单个GPU的显存中,可以使用数据并行加速。如果模型不能够放
预置框架启动文件的启动流程说明 ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。 本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。 Asc