检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
# 查看MFCC特征的形状 print(mfccs.shape) 模型训练 1.使用深度学习框架 现在有很多深度学习框架支持声纹识别模型的训练,如TensorFlow和PyTorch。我们将使用TensorFlow来构建一个简单的模型。 示例:构建和训练模型 import tensorflow
224 * 224 的时候,就相当于几乎覆盖了整个图片,这样对原始图片进行不同的随机裁剪得到的图片就基本上没差别,就失去了增加数据集的意义。但同时也不宜过大,否则裁剪到的图片只含有目标的一小部分,也不是很好。 针对上述裁剪的问题,提出的训练图片预处理过程: 1.训练图片归一化,图像等轴重调(最短边为S)
Llama是基于Transformer结构的自回归语言模型,提供多种尺寸的LLaMA参数,本模型为7B规模的预训练版本。 Llama是基于Transformer结构的自回归语言模型,提供多种尺寸的LLaMA参数,本模型为7B规模的预训练版本。 昇腾 | 推理 MindSpore |
创建工程 创建训练工程是从创建模型训练工程、编辑模型训练代码到调试模型训练代码的端到端的代码开发过程。 创建模型训练工程:创建模型训练代码编辑和调试的环境。 编辑模型训练代码:在线编辑模型训练代码。 调试模型训练代码:在线调试编辑好的模型训练代码。 创建训练工程步骤如下。 单击“创建”,弹出“创建训练”对话框。
在ModelArts训练得到的模型欠拟合怎么办? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。
模型训练 模型训练简介 创建模型训练工程 创建联邦学习工程 创建训练服务 创建超参优化服务 创建Tensorboard 打包训练模型 父主题: 用户指南
优化器:常用的优化器包括Adam、SGD等,用于调整模型参数以最小化损失函数。 B. 训练过程 批量训练:将训练数据分成小批量,逐批输入模型进行训练。 评估与调整:在训练过程中,定期评估模型在验证集上的性能,并根据需要调整模型参数和结构。 下面是一个训练模型的示例代码: # 示例训练数据 X_train
数。 模型训练结束后,训练模型以及相关输出信息需保存在OBS路径。“输出”数据默认配置为模型输出,代码参数为“train_url”,也支持用户根据1的算法代码自定义输出路径参数。 在创建训练作业时,填写输入路径和输出路径。 训练输入选择对应的OBS路径或者数据集路径,训练输出选择对应的OBS路径。
在训练日志界面上给出提示。提示包括三部分:失败的可能原因、推荐的解决方案以及对应的日志(底色标红部分)。 图1 训练故障识别 ModelArts Standard会对部分常见训练错误给出分析建议,目前还不能识别所有错误,提供的失败可能原因仅供参考。针对分布式作业,只会显示当前节
模型训练 模型训练新建模型训练工程的时候,选择通用算法有什么作用? 使用训练模型进行在线推理的推理入口函数在哪里编辑? 通过数据集导入数据后,在开发代码中如何获取这些数据? 如何在模型训练时,查看镜像中Python库的版本? 如何在模型训练时,设置日志级别? 如何自定义安装python第三方库?
如何在模型训练时,设置日志级别? 在TensorFlow的log日志等级如下: - 0:显示所有日志(默认等级) - 1:显示info、warning和error日志 - 2:显示warning和error信息 - 3:显示error日志信息 以设置日志级别为“3”为例,操作方法如下:
选用Multi-Class 数据集格式,通过固定的目录结构获取图片和对应标签数据。 在同一个目录中保存原图片及对应标签,其中图片名为 “image.png”,标签名为 “mask.png”。 通过在config中的split参数将所有的图片分为训练集和验证集,split 默认为 0.8。
如何将在ModelArts中训练好的模型下载或迁移到其他账号? 通过训练作业训练好的模型可以下载,然后将下载的模型上传存储至其他账号对应区域的OBS中。 获取模型下载路径 登录ModelArts管理控制台,在左侧导航栏中选择“模型训练 > 训练作业”,进入“训练作业”列表。 在训练作业列表中,单击目标训练作业名称,查看该作业的详情。
模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
py”。本文采用上传方式描述。 不上传至训练工程的代码目录:本地打开算法文件,将该算法文件内容拷贝至与训练工程同名的.py文件中。进行模型训练时,主入口文件选择与训练工程同名的.py文件。 单击“上传”。 单击界面右上角的“训练”。 进入“训练任务配置”页面。 配置训练任务,如图5所示。 参数配置说明如下:
存储位置:输入用户在Notebook中创建的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题:
资源运行的时长总和。 “重启次数” 记录训练过程中时如果出现故障,作业自动重启的次数。仅当创建训练作业时开启“自动重启”功能时可见。 “描述” 训练作业的描述。 您可以单击编辑图标,更新训练作业的描述。 “作业优先级” 显示训练作业的优先级。 训练作业参数 表2 训练作业参数 参数