检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
该示例演示了如何使用盘古应用百宝箱生成创意活动方案。 应用百宝箱是盘古大模型服务为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 操作流程 使用盘古应用百宝箱生成创意活动方案的步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。
功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业API后,在这个
数据集加工算子介绍 文本类加工算子介绍 视频类加工算子介绍 图片类加工算子介绍 气象类加工算子介绍 父主题: 加工数据集
加工数据集 数据集加工场景介绍 数据集加工算子介绍 加工文本类数据集 加工图片类数据集 加工视频类数据集 加工气象类数据集 管理加工后的数据集 父主题: 使用数据工程构建数据集
发布数据集 数据集发布场景介绍 发布文本类数据集 发布图片类数据集 发布视频类数据集 发布气象类数据集 发布预测类数据集 发布其他类数据集 管理发布后的数据集 父主题: 使用数据工程构建数据集
数据集格式要求 文本类数据集格式要求 图片类数据集格式要求 视频类数据集格式要求 气象类数据集格式要求 预测类数据集格式要求 其他类数据集格式要求 父主题: 使用数据工程构建数据集
target表示期望的正确答案,bad_target表示不符合预期的错误答案。 带人设单轮 {"system": "你是一位机制幽默的问答助手", "context": ["你好,请介绍自己"], "target":"哈哈,你好呀,我是你的聪明助手,怎么帮到你?", "bad_target":"我不会回答"}
功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业API后,在这个
在大规模数据集中,噪声和错误数据是不可避免的。这包括回复事实性错误、拼写错误、语法错误、不完整的数据片段等。通过自动化的脚本或手动审核,识别并移除这些低质量的数据,以确保模型学习的质量。 过滤不适当内容 :大模型的训练数据可能包含不适当或有害的内容。使用自然语言处理工具和规则集来检测并过滤掉这些内容,以确保训练数据的安全性和道德性。
cnop噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 ensemble_noise_perlin_scale
除了用户自行发布的数据集,平台还提供了从AI Gallery中订阅数据资产的功能。AI Gallery提供了模型、数据集、AI应用等AI数字资产的共享,为企业级或个人开发者等群体,提供安全、开放的共享及交易环节。 发布数据资产至AI Gallery 登录ModelArts Stud
盘古NLP大模型是业界首个超千亿参数的中文预训练大模型,结合了大数据预训练和多源知识,借助持续学习不断吸收海量文本数据,持续提升模型性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意营销等多个典型场景中,提供强大的AI技术支持。 ModelArts
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单
服务,便捷地构建自己的模型和应用。 数据工程工具链:数据是大模型训练的核心基础。数据工程工具链作为平台的重要组成部分,具备数据获取、数据加工和数据发布等功能,确保数据的高质量与一致性。工具链能够高效收集并处理各种格式的数据,满足不同训练任务的需求,并提供强大的数据存储和管理能力,为大模型训练提供坚实的数据支持。
据,确保数据的准确性与一致性,从而提高数据质量,为模型训练提供可靠的输入。 扩展数据集的多样性和泛化能力 在数据量不足或样本不平衡的情况下,数据合成可以生成新数据,扩展数据集的规模和多样性。通过增加数据的多样性,能够提升模型在各种场景下的泛化能力,增强其对未知数据的适应性。 增强模型训练的有效性
退订属于高危操作,请确保您已保存所有必要的数据和进度,以避免不必要的损失。 扩缩容资源 ModelArts Studio大模型开发平台支持数据资源、训练资源、推理资源的扩缩容,即在当前资源的基础上扩充或缩小对应的资源。 资源扩缩容的步骤如下: 登录ModelArts Stud
配置请求体参数 其中,domain_id、domain_name、project_id、project_name获取方式如下: 登录管理控制台。 鼠标移动到右上角已登录的用户名上,在下拉列表中选择“我的凭证”。 在“我的凭证”页面,可以获取domain_id、domain_name、pro
全球 支持训练的模型清单见表2,您可根据具体使用场景选择合适的模型。例如天气基础要素预测,需要时间分辨率为1小时的场景下,您可以选择Pangu-AI4S-Weather_1h-3.0.0模型。 表2 中期天气要素预测模型、降水模型的类型 模型名称 说明 Pangu-AI4S-Wea
理解底层任务 需要站在模型的角度理解相关任务的真实底层任务,并清晰描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题
边缘部署是指将模型部署到用户的边缘设备上,这些设备通常是用户自行采购的服务器,通过ModelArts服务纳管为边缘资源池,然后利用盘古大模型服务将模型部署到这些边缘资源池中。 ModelArts边缘节点是ModelArts平台提供的用于部署边缘服务的终端设备。创建边缘资源池之前需