检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
将在到期后自动停止使用。 如果在计费周期内不再使用包年/包月资源,您可以执行退订操作,系统将根据资源是否属于五天无理由退订、是否使用代金券和折扣券等条件返还一定金额到您的账户。详细的退订规则请参见云服务退订规则概览。 如果您已开启“自动续费”功能,为避免继续产生费用,请在自动续费
SDK支持安装在Windows和Linux操作系统中。 如果在Windows上安装ModelArts SDK时出现报错,可参见FAQ:安装ModelArts SDK报错处理报错。 步骤一:下载ModelArts SDK 下载ModelArts SDK软件包,获取最新版本的ModelArts
在总览页面进入CodeLab。 在“Other”区域下,选择“Terminal”,新建一个terminal文件。 在代码输入栏输入以下命令,获取当前环境的kernel,并激活需要安装依赖的python环境。 cat /home/ma-user/README source /home
微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data) --tokenizer-type:tokenizer的类型,可选项有[
打开一个Notebook实例,进入到Launcher界面。 在“Other”区域下,选择“Terminal”,新建一个terminal文件。 在代码输入栏输入以下命令,获取当前环境的kernel,并激活需要安装依赖的python环境。 cat /home/ma-user/README source /home
是否必填 数据类型 dataset_name 数据集的名称,只能是中文、字母、数字、下划线或中划线组成的合法字符串,长度为1-100位。 是 str、Placeholder dataset_format 数据集格式,默认为0,表示文件类型。 否 0:文件类型 1:表格类型 data_type
worker-0","worker-1",依次类推。 表3 返回参数说明 参数 参数类型 描述 metrics Array of objects 运行指标。 表4 metrics 参数 参数类型 描述 metric String 运行指标,可选值如下: cpuUsage(CPU使
get_model_list打印参数说明 参数 参数类型 描述 total_count Integer 不分页的情况下,符合查询条件的总模型数量。 count Integer 模型数量。 models model结构数组 模型元数据信息。 表3 model结构 参数 参数类型 描述 model_id String
针对文本分类的自动学习项目,项目创建成功后,您可以根据业务变化,修改用于标注的标签。支持添加、修改和删除标签。 添加标签 在“未标注”页签下,单击“标签集”右侧的加号,在弹出“新增标签”对话框中,设置“标签名称”和“标签颜色”,然后单击“确定”完成标签添加。 修改标签 在“已标注”页签中“全部标
get_service_logs返回参数说明 参数 参数类型 描述 service_id String 服务ID。 service_name String 服务名称。 logs log结构数组 服务的更新记录。 表2 log结构 参数 参数类型 描述 update_time Long 更新时间,距'1970
sh get-docker.sh 获取基础镜像。本示例以Ubuntu18.04为例。 docker pull ubuntu:18.04 新建文件夹“self-define-images”,在该文件夹下编写自定义镜像的“Dockerfile”文件和应用服务代码“test_app.p
微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data) --tokenizer-type:tokenizer的类型,可选项有[
微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data) --tokenizer-type:tokenizer的类型,可选项有[
<exp_name>:实验名称,具体可以设置的值参考<cfgs_yaml_file> Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 输入指定的目录在训练开始时,平台会自动将指定的OBS路径下的文件copy到容器内
like ["conversation_id", "text"]. 对于csv、xlsx文件,平台会根据训练类型的不同,将其转为Alpaca格式或MOSS格式,选择预期的数据类型无效。 父主题: Studio
update_job_configs请求参数说明 参数 是否必选 参数类型 描述 description 是 String 需要更改的训练作业的描述信息。 无成功响应参数 表3 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。
参数说明 参数名 参数类型 是否必选 参数说明 -t / --flavor-type String 否 资源规格类型,如果不指定默认返回所有的资源规格。 -v / --verbose Bool 否 显示详细的信息开关,默认关闭。 示例:查看训练作业的资源规格及类型。 ma-cli ma-job
微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data) --tokenizer-type:tokenizer的类型,可选项有[
Turbo中的数据执行编辑操作。 创建Notebook 创建开发环境Notebook实例,具体操作步骤请参考创建Notebook实例。 镜像选择已注册的自定义镜像,资源类型选择创建好的专属资源池,规格推荐选择“Ascend: 8*ascend-snt9b”。 图1 Notebook中选择自定义镜像与规格 存储
sh get-docker.sh 获取基础镜像。本示例以Ubuntu18.04为例。 docker pull ubuntu:18.04 新建文件夹“self-define-images”,在该文件夹下编写自定义镜像的“Dockerfile”文件和应用服务代码“test_app.p