检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查找元数据 在“元数据管理”页面,您可以在搜索框中输入元数据文件的名称进行查找。 图1 查找元数据 父主题: 元数据操作
hip),点和关系是最重要的实体。 图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。
关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入路径的起点ID
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。
中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域 参数说明 表1 Betweenness Centrality算法参数说明
on:表示文件系统的挂载点。 网络 在网络页面,您可以根据节点和网卡名称浏览指定节点的网络资源实时消耗情况。其中包括:节点名称、网卡名称、网卡状态、接收丢包数、接收速率(KB/s)、发送速率(KB/s)和网络监控情况等。 图5 网络页 用户可单击指定节点名称所在行最右侧的“监控”按钮,进入网络监控概览
matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于社交网络分析、生物信息学、交通运输、群体发现、异常检测等领域。 参数说明 表1 subgraph
filters元素格式 参数 是否必选 类型 取值范围 默认值 说明 edge_filter 否 json 无 无 全图查询边时的过滤条件。 vertex_filter 否 json 无 无 全图查询点时的过滤条件。 表4 response_data参数说明 字段名 是否必选 类型 说明 path_length
、目的点target、跳数k、路径数n、过滤条件filters,找出source和target间不多于n条的k跳无环路径。 适用场景 任意网络。 参数说明 表1 filtered_n_paths参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 起始点 String
Centrality)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别,城市热点事件\早晚高峰人群车辆迁徙发生时关键路段的模拟;适用于社交、金融风控、交通路网、城市规划等领域 参数说明
钮进行SDK的下载。 单击“历史版本”:您可以查看到SDK和驱动的历史版本号,CPU架构以及在操作列可以进行“下载”操作。 图引擎实例连接信息 图3 实例信息 选择您已创建的图实例名称,可以查看到以下信息: 内网访问地址:同一私有网络内的弹性云服务器可以通过内网访问地址连接当前图实例。
一般情况下,建议就近选择靠近您或者您的目标用户的区域,这样可以减少网络时延,提高访问速度。不过,在基础设施、BGP网络品质、资源的操作与配置等方面,中国大陆各个区域间区别不大,如果您或者您的目标用户在中国大陆,可以不用考虑不同区域造成的网络时延问题。 在除中国大陆以外的亚太地区有业务的用户,可
detection)算法适用于金融风控中循环转账检测、反洗钱,网络路由中异常链接检测,企业担保圈贷款风险识别等场景。 参数说明 表1 filtered circle detection参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources 否 查询的起始节点ID集合 String - 标
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景
Paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的所有最短路径。 适用场景 全最短路径算法(All Shortest Paths)适用于路径设计、网络规划等场景。 参数说明 表1 全最短路径算法(All Shortest Paths)参数说明 参数 是否必选 说明 类型 取值范围 默认值
值即为Token。 表4 请求Body参数 参数 是否必选 参数类型 描述 eipId 是 String 弹性公网IP的ID。ID的查询请参考查询弹性公网IP。 响应参数 状态码: 200 表5 响应Body参数 参数 参数类型 描述 errorMessage String 系统提示信息。
即为Token。 表3 请求Body参数 参数 是否必选 参数类型 描述 eip_id 是 String 弹性公网IP的ID。ID的查询请参考查询弹性公网IP。 响应参数 状态码: 200 无 状态码: 400 表4 响应Body参数 参数 参数类型 描述 error_code String
企业IT应用 网络&IT基础设备规模庞大、结构复杂,帮助客户深入了解设备状态、设备之间的关系,实现全网络设备智能监控与管理。 该场景能帮助您实现以下功能。 合理规划网络 快速确定故障节点对网络的影响,并在最依赖的节点周围推荐备用路由,在新节点的规划时,精准规划网络位置。 分析故障根因