检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
} }); 上述例子中,当满足if判断条件时,会直接终止Agent的执行,且finalAnswer被设置为工具的原始返回值。 父主题: 配置Agent(Java SDK)
"description": "充值金额" } }, "required": ["chargeType", "amount"] } 父主题: 配置Agent(Java SDK)
return_type。为可选参数,如果func为未指定返回值类型的callable类型,必须通过return_type指定返回值类型。 父主题: 配置Agent(Python SDK)
allback, tool_stream_callback) StreamCallBack的实现与定义与LLM的回调完全相同。 父主题: 配置Agent(Python SDK)
ovider, vector_config) 定义一个ToolRetriever包含2个参数,一个ToolProvider,一个向量数据库配置。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvider,I
"description")) .build()); 定义一个ToolRetriever包含ToolProvider和向量数据库配置2个参数。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvid
模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,设置模型类型、训练类型、训练模型、训练参数和checkpoints等参数。 其中,训练配置选择LLM(大语言模型),训练类型选择自监督训练,根据所选模型配置训练参数。 表1 自监督训练参数说明 参数名称 说明 模型类型
模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,选择模型类型、训练类型、训练方式、训练模型与训练参数。 其中,训练配置选择LLM(大语言模型),训练类型选择有监督训练,根据所选模型配置训练参数。 表1 有监督微调参数说明 参数名称 说明 模型类型 选择“LLM”。
盘古应用开发SDK使用前准备 使用盘古大模型应用开发SDK时,需要在代码中配置以下信息,请提前收集。 表1 配置项说明及获取方式 类型 资源 是否必选 相关配置项 说明 配置项值获取方式 IAM认证 - 是 sdk.iam.url Token认证调用URL。 示例:POST ht
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域: 西南-贵阳一 开发盘古NLP大模型 开发盘古科学计算大模型 压缩盘古大模型 部署盘古大模型 调用盘古大模型
及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。
购买盘古大模型套件 开通盘古大模型服务 开通大模型的文本补全、多轮对话能力。 开通盘古大模型服务 配置授权/创建子用户 配置盘古访问OBS服务权限,多用户使用平台情况下需要创建子用户。 配置盘古访问授权 创建子用户并授权使用盘古 准备训练数据 创建一个新的数据集 创建一个新的数据集,用来管理上传至平台的训练或者评测数据。
可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题: 安全
模型评估”。 单击界面右上角“创建评估任务”,进入评估任务创建页面。 图1 模型评估列表页面 填写评估任务所需的评估配置、评估数据和基本信息。 图2 创建评估任务 评估配置: 待评估模型:支持选择多个模型版本同时评估,最多选择5个。待评估模型必须符合前提条件。 评估资源:依据选择的模型数据自动给出所需的评估资源。
型能力的入口。用户可以通过在“能力调测”页面选择调用基模型或训练后的模型。 训练后的模型需要“在线部署”且状态为“运行中”时,才可以使用本章节提供的方法进行调测,具体步骤请参见部署为在线服务。 文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如,让
是华为云推出的集数据管理、模型训练和模型部署为一体的一站式大模型开发与应用平台。平台提供了包括盘古大模型在内的多种大模型服务,支持大模型的定制开发,并提供覆盖全生命周期的大模型工具链。 盘古大模型为开发者提供了一种简单高效的方式来开发和部署大模型。通过数据工程、模型开发和应用开发
推理资产不足,现有资源无法满足同时部署多个模型时,可以扩容模型推理资产。 在“平台管理 > 资产管理 > 模型推理资产”中,单击操作列“扩容”执行扩容操作。 图4 扩容模型推理资产 不同类型的模型在部署时,做占用的推理资产数量存在差异,部署模型时所占的推理资产数量与模型类型关系如下。 表1 部署模型 模型类型
在创建数据集弹出框中选择“创建一个训练数据集”,单击“创建”。 图2 创建训练数据集 进入训练数据集页面后,需要进行训练配置、数据配置和基本配置。 训练配置 选择模型类型、训练类型以及基础模型。 数据配置 选择训练数据集和配比类型,设置训练数据集配比,详情请参考数据配比功能介绍。 在训练数据集配比完成
型相比,BI专业大模型更适合执行数据分析、报告生成和业务洞察等任务。 模型推理资产即部署模型所需的cpu、gpu资源(专属资源池)。如果不订购推理资产,可以使用订购的盘古模型进行训练,但无法部署训练后的模型。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即购买”,平台将