检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。 配置OBS访问授权步骤如下: 登录ModelArts Studio大模型开发平台首页。
通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。
启动。单击操作列的“启动”,再单击弹窗的“确定”,可以启动训练任务。 克隆。单击操作列的“更多 > 克隆”,可以复制当前训练任务。 重试。单击操作列的“更多 > 重试”,可以编辑运行失败的节点,重试该节点的训练。 删除。单击操作列的“更多 > 删除”,可以删除当前不需要的训练任务。
启动。单击操作列的“启动”,再单击弹窗的“确定”,可以启动训练任务。 克隆。单击操作列的“更多 > 克隆”,可以复制当前训练任务。 重试。单击操作列的“更多 > 重试”,可以编辑运行失败的节点,重试该节点的训练。 删除。单击操作列的“更多 > 删除”,可以删除当前不需要的训练任务。
启动。单击操作列的“启动”,再单击弹窗的“确定”,可以启动训练任务。 克隆。单击操作列的“更多 > 克隆”,可以复制当前训练任务。 重试。单击操作列的“更多 > 重试”,可以编辑运行失败的节点,重试该节点的训练。 删除。单击操作列的“更多 > 删除”,可以删除当前不需要的训练任务。
动(重启评测任务)和删除操作。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型评测”,可进行如下操作: 克隆。单击操作列的“ 克隆”,可以复制当前评测任务。 启动。单击操作列的“启动”,可以重启运行失败的评测任务。
在Agent开发平台中,插件是大模型能力的重要扩展。通过模块化方式,插件能够为大模型提供更多专业技能和复杂任务处理能力,使其在多样化的实际场景中更加高效地满足用户需求。 通过插件接入,用户可以为应用赋予大模型本身不具备的能力。插件提供丰富的外部服务接口,当任务执行时,模型会根据提示词感知适用的插件,并自动调
t开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。
同一资源是否同时支持包年/包月和按需计费两种模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费。 数据智算单元、数据通算单元默认采用按需计费。 训练单元采用包周期和按需计费两种方式。 两种计费方式不能共存,只支持按照一种计费方式进行订购。 父主题: 计费FAQ
该示例演示了如何使用盘古应用百宝箱生成创意活动方案。 应用百宝箱是盘古大模型服务为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 操作流程 使用盘古应用百宝箱生成创意活动方案的步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。
间差距的指标。该值越小,表示模型在表面(海表)变量的预测精度越高。 RMSE 均方根误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的平方误差的平均值的平方根。该值越小,代表模型性能越好。 MAE 平均绝对误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的绝对误差的平均值。该值越小,代表模型性能越好。
合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通文本类数据集。 创建文本类数据集配比任务 创建文本类数据集配比任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
平均绝对误差是预测值与真实值之间绝对误差的均值。它同样用于衡量模型预测值与实际值之间的差异,数值越小,表明模型预测的准确性越高。 真实值和预测值 真实值和预测值在图表中的对比情况。 准确率 模型预测结果中,所有预测正确的样本占总样本的比例。数值越高,模型效果越好。 精准率 精准率是指在模型预测为正类的样本中,真
ss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为
微调阶段:微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模
关于盘古大模型的详细费用信息,敬请咨询华为云售前咨询,我们将为您提供专业的解答和支持。 通过阅读本文,您可以快速了解盘古大模型的计费模式、计费项、续费、欠费等主要计费信息。 计费模式 盘古大模型提供包周期计费、按需计费两种计费模式,以满足不同场景下的用户需求。关于计费模式的详细介绍请参见计费模式。
明确任务需求 需要站在模型的角度理解相关任务的真实底层任务,并清晰描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题
Boolean 是否仅统计输入字符的Token数 true:仅统计输入字符串的Token数; false:统计输入字符串和推理过程产生字符的总Token数。 响应参数 表4 响应Body参数 参数 参数类型 描述 tokens List<String> 分解出的Token列表。 token_number