检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
“创建”,进入创建Notebook页面。“公共镜像”选择“MindSpore”的,其他参数默认。具体操作请参考创建Notebook实例。 创建完成后Notebook的状态为“运行中”,单击“操作列”的“打开”,自动进入JupyterLab界面,打开Terminal。 在Notebook中制作自定义镜像
accelerate==0.30.1 timm==0.9.16 准备数据集。 下载Kaggle官网提供的imagenet-mini数据集,解压之后文件大小4.1GB。该数据集是从[imagenet-2012]数据集中筛选的少量数据集。 准备预训练权重。 下载Hugging Face权重。 迁移适配。 入口函数train
908-xxx.zip文件,获取路径参见表1。本案例使用的是解压到子目录aigc_train->torch_npu->diffusers的所有文件,将diffusers整个目录上传到宿主机上。 依赖的插件代码包、模型包和数据集存放在宿主机上的本地目录结构如下,供参考。 [root@devserver
如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。 减慢创建文件的速度。 关闭ext4文件系统的dir_index属性,具体可参考:https://access.redhat.com/sol
error_message String 调用失败时的错误信息。 调用成功时无此字段。 error_code String 调用失败时的错误码,具体请参见错误码。调用成功时无此字段。 请求示例 如下以修改“job_id”为10的作业描述为例。 PUT https://endpoint/v1/{
resource_id String 可视化作业的计费资源ID。 job_id Long 可视化作业的ID。 job_desc String 可视化作业的具体描述。 duration Long 可视化作业的运行时长,单位为毫秒。 create_time Long 可视化作业的创建时间,时间戳格式。 train_url
必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。
定义镜像的API接口功能,无误后将自定义镜像上传至SWR服务。 将自定义镜像创建为模型:将上传至SWR服务的镜像导入ModelArts的模型管理。 将模型部署为在线服务:将导入的模型部署上线。 本地构建镜像 以linux x86_x64架构的主机为例,您可以购买相同规格的ECS或
自定义镜像的API接口功能,无误后将自定义镜像上传至SWR服务。 将自定义镜像创建为模型:将上传至SWR服务的镜像导入ModelArts的模型。 将模型部署为在线服务:将导入的模型部署上线。 本地构建镜像 以linux x86_x64架构的主机为例,您可以购买相同规格的ECS或者
aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
rank_table_file.json 步骤五:启动容器 启动容器镜像前请先按照参数说明修改${}中的参数。docker启动失败会有对应的error提示,启动成功会有对应的docker id生成,并且不会报错。 docker run -itd --privileged \ --device=/dev/davinci0
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,
语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,
语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
-size)的设置:需要遵循GBS/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置
语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,
记住使用Dockerfile创建的新镜像名称, 后续使用 ${dockerfile_image_name} 进行表示。 Step2 在ECS中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。