检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Parameter objects 算法的运行参数。 inputs Array of inputs objects 算法的数据输入。 outputs Array of outputs objects 算法的数据输出。 engine engine object 算法的引擎。 code_tree
Integer 指定每一页展示作业参数的总量,默认为10,“per_page”可选的范围为[1,100]。 page 否 Integer 指定要查询页的索引,默认为1。 sortBy 否 String 指定查询的排序方式,默认是根据引擎查找“engine”,目前支持的排序还有模型名称“mode
Integer 查询到当前用户名下的所有算法限制个数。 offset Integer 查询到当前用户名下的所有算法查询偏移量。 sort_by String 查询到当前用户名下的所有算法排序依赖字段。 order String 查询到当前用户名下的所有算法排序方式,默认为“desc”,
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
查询数据处理的算法类别 功能介绍 查询数据处理的算法类别。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/processor-tasks/items
Gallery,单击右上角“我的Gallery > 我的资产 > 算法”,进入“我的算法”页面。 选择“我的订阅”页签,进入个人订阅的算法列表。 在算法列表选择需要使用的算法,单击“应用控制台”列的“ModelArts”。 在弹出的“选择云服务区域”页面选择ModelArts所在的云服务区域,单击“确定”跳转至ModelArts控制台的“算法管理
发布免费算法 在AI Gallery中,您可以将个人开发的算法免费分享给他人使用。 前提条件 在ModelArts的算法管理中已准备好待发布的算法。创建算法的相关操作请参见创建算法。 创建算法时,算法代码存储的OBS桶内不能存在文件和文件夹重名的情况,这样算法可能会发布失败。如果算法发布成功,则代码开放会失败。
objects 超参搜索算法的参数列表。 description String 超参搜索算法的描述。 表4 params 参数 参数类型 描述 key String 超参搜索算法的参数名称。 value String 超参搜索算法的参数取值。 type String 超参搜索算法的参数类型。 请求示例
自定义镜像算法的容器启动命令。 parameters Array of Parameter objects 算法的运行参数。 inputs Array of inputs objects 算法的数据输入。 outputs Array of outputs objects 算法的数据输出。
创建算法 机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式
删除算法 功能介绍 删除算法。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v2/{project_id}/algorithms/{algorithm_id}
SDK 参考本地安装ModelArts SDK完成SDK的安装。 Step2:下载ma-cli 下载ma-cli软件包。 完成软件包签名校验。 下载软件包签名校验文件。 安装openssl并执行如下命令进行签名校验。 openssl cms -verify -binary -in D
Parameter objects 算法的运行参数。 inputs Array of inputs objects 算法的数据输入。 outputs Array of outputs objects 算法的数据输出。 engine engine object 算法的引擎。 code_tree
识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。
ModelArts”后,选择ModelArts的云服务区域(即要部署服务的云服务区),单击“确认”,跳转至ModelArts的“算法管理>我的订阅”中。 步骤3:使用订阅算法创建训练作业 算法订阅成功后,算法将呈现在“算法管理>我的订阅”中,您可以使用订阅的“ResNet_v1_50”算法创建训练作业,获得模型。
使用订阅算法训练结束后没有显示模型评估结果 问题现象 AI Gallery中的YOLOv5算法,训练结束后没有显示模型评估结果。 原因分析 未标注的图片过多,导致没有模型评估结果。 处理方法 对所有训练数据进行标注。 父主题: 预置算法运行故障
训练管理 创建算法 查询算法列表 查询算法详情 更新算法 删除算法 获取支持的超参搜索算法 创建训练实验 创建训练作业 查询训练作业详情 更新训练作业描述 删除训练作业 终止训练作业 查询训练作业指定任务的日志(预览) 查询训练作业指定任务的日志(OBS链接) 查询训练作业指定任务的运行指标
ascend_vllm代码包在Step9 构建推理代码已生成。 模型权重文件获取地址请参见表1。 推理启动脚本run_vllm.sh制作请参见•创建推理脚本文件run_vllm.sh。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1
sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm.sh run_vllm.sh脚本示例如下。
转换后的权重上传至OBS中。 权重文件夹不要以"model"命名,若以"model"命名会导致后续创建AI应用报错。 推理启动脚本run_vllm.sh制作请参见•创建推理脚本文件run_vllm.sh。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请