检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
默认情况下,评测结果会按照result/{service_name}/{eval_dataset}-{timestamp} 的目录结果保存到对应的测试工程。执行多少次,则会在{service_name}下生成多少次结果。 单独的评测结果如下: {eval_dataset}-{timestamp} # 例如: mmlu-20240205093257
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤2 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
-size)的设置:需要遵循GBS/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置
-size)的设置:需要遵循GBS/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置
划线和中划线的名称。 job_desc 否 String 对训练作业的描述,默认为“NULL”,字符串的长度限制为[0, 256]。 config 是 Object 创建训练作业需要的参数。详情请参见表3。 workspace_id 否 String 指定作业所处的工作空间,默认值为“0”。
911软件包中的AscendCloud-CV-6.3.911-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,登录后在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。
权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤2 修改训练超参配置 以 llama2-70b 和 llama2-13b
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr
变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 g
failed”。 原因分析 可能是所在环境的网络有问题,无法自动下载VS Code Server,请手动安装。 解决方法 打开VS Code,选择“Help>About”,并记下“Commit”的ID码。 确认创建Notebook实例使用的镜像的系统架构,可以在Notebook中打开Terminal,通过命令uname
离线训练安装包准备说明 申请的模型软件包一般依赖连通网络的环境。若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一:资源下载
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。
在华为公有云平台,申请的资源一般要求连通网络。因此用户在准备环境时可以运行 scripts/install.sh 直接下载安装资源,或通过 Dockerfile 下载安装资源并构建一个新的镜像。 若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,
低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
tch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
存储路径。 如果type为“obs”类型,该值必须填写,该值需为有效的OBS桶路径,且以“/”结束。不能指定为OBS桶的根目录,需指定为OBS桶下的具体目录。 如果type为“obsfs”类型,该值需为有效的OBS并行文件系统的桶名(当前CCE不支持挂载子目录)。 如果type为“evs”类型,该值不需要填写。
存储路径。 如果type为“obs”类型,该值必须填写,该值需为有效的OBS桶路径,且以“/”结束。不能指定为OBS桶的根目录,需指定为OBS桶下的具体目录。 如果type为“obsfs”类型,该值需为有效的OBS并行文件系统的桶名(当前CCE不支持挂载子目录)。 如果type为“evs”类型,该值不需要填写。
modelarts:dataset:getWorkforceTask - √ √ 表2 数据集版本管理的细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 查询数据集的版本列表 GET /v2/{project_id}/datasets/{dataset_id}/versions
在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。需要创建的文件夹列表如表1所示,示例中的桶名称“test-modelarts”和文件夹名称均为举例,请替换为用户自定义的名称。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。 请确保您使用的OBS与ModelArts在同一区域。 表1
训练tokenizer文件说明 在训练开始前,有些模型需要对模型的tokenizer文件,或者模型配置文件进行修改,具体的修改如下: Qwen-VL 修改文件modeling_qwen.py: # 将36 37 两行注释部分 36 SUPPORT_BF16 = SUPPORT_CUDA