检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=tren
查看当前GPU裸金属服务器的安全组的入方向规则的配置,发现仅开通了TCP协议的22端口。 ping命令是一种基于ICMP协议(Internet Control Message Protocol)的网络诊断工具,利用ICMP协议向目标主机发送数据包并接收返回的数据包来判断网络连接质量。当安全组的入方向
_eval.sh中的参数 模型存放的地方,如果根据第2步的方式保存的模型,设置如下: CKPT="llama-vid/llama-vid-7b-full-224-video-fps-1" 调用openai的key,评估精度时需要调用openai,需要填写正确的key,这个可能需要进行付费调用,评估1000条大概需要0
Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=tren
Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=tren
步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=tren
Code插件官网vscode_marketplace搜索待安装的Python插件,Python插件路径。 单击进入Python插件的Version History页签后,下载该插件的离线安装包,如图所示。 图1 Python插件离线安装包 在本地VS Code环境中,将下载好的.vsix文件拖动到远端Notebook中。
方法一:单击左侧菜单栏的Run(Ctrl+Shift+D)按钮,再单击create a launch.json file。如下图所示: 方法二:单击上侧菜单栏中的Run > Open configurations按钮 步骤二:选择语言 如果需要对Python语言进行设置,在弹出的Select
推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 获取软件和镜像 表1 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。
步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=tren
在使用keras时,升级版本>=2.3.0之后,之前跑通的代码出现如下报错: TypeError: Unexpected keyword argument passed to optimizer: learning_rate 原因分析 出现该问题的可能原因是“learning_rate”的参数名称写错了。kera
生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入,然后和一个随机高斯噪声,一起输入到U-Net网络中进行不断去噪。在经过多次迭代后,最终模型将输出和文字相关的图像。 SD1.5 Finetune是指在已经训练好的SD1.5模型基础上,使用新的数据集进行微调(f
eus.yml \ prom/prometheus 这里使用的是Prometheus最基本的功能,如有更高级的诉求,可参考prometheus的官方文档。 步骤五:安装Grafana 运行社区最新发行的Grafana版本: docker run -d -p 3000:3000
当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤 创建conda env。 在Notebook的Termin
用户自身用户组的授权策略的授权范围,如果配置不当就会出现用户越权的问题。 为了控制委托授权的越权风险,ModelArts服务的权限管理功能要求只有租户管理员才能为用户配置委托,由管理员保证委托授权的安全性。 委托授权的最小化 管理员在配置委托授权时,应严格控制授权的范围。 Mod
自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考obsutil安装和配置。
以及数据标注要求,选择创建表格类型的数据集。填写数据集基本信息。 图5 表格类型的参数 名称:数据集的名称,可自定义您的数据集。 描述:该数据集的详情信息。 数据类型:根据实际需求,选择对应的数据类型。 更多参数填写请参考表3。 表3 数据集的详细参数 参数名称 说明 数据源(“OBS”)
Server为一台弹性裸金属服务器,您可以使用BMS服务提供的切换操作系统功能,对Lite Server资源操作系统进行切换。本文介绍以下三种切换操作系统的方式: 在BMS控制台切换操作系统 使用BMS Go SDK的方式切换操作系统 使用Python封装API的方式切换操作系统 切换操作系统需满足以下条件:
Step2 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=tren
Step2 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=tren