检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
service_url:成功部署推理服务后的服务预测地址,示例:http://${docker_ip}:8080/generate。此处的${docker_ip}替换为宿主机实际的IP地址,端口号8080来自前面配置的服务端口。 few_shot:开启少量样本测试后添加示例样本的个数。默认为3,取值范围为0~5整数。
默认情况下,评测结果会按照result/{service_name}/{eval_dataset}-{timestamp} 的目录结果保存到对应的测试工程。执行多少次,则会在{service_name}下生成多少次结果。 单独的评测结果如下: {eval_dataset}-{timestamp} # 例如: mmlu-20240205093257
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤2 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
Notebook有代理吗?如何关闭? Notebook有代理。 执行env|grep proxy命令查询Notebook代理。 执行unset https_proxy unset http_proxy命令关闭代理。 父主题: 环境配置相关
阶段。 资源利用率:在作业进程IO没有变化的情况下,采集一定时间段内的GPU利用率或NPU利用率,并根据这段时间内的GPU利用率或NPU利用率的方差和中位数来判断资源使用率是否有变化。如果没有变化,则判定作业卡死。 系统预置了卡死检测的环境变量“MA_HANG_DETECT_TI
以从地区和终端节点中查询所有服务的终端节点。 约束与限制 您能创建的ModelArts资源的数量与配额有关系,具体请参见服务配额。 更详细的限制请参见具体API的说明。 基本概念 账号 用户注册时的账号,账号对其所拥有的资源及云服务具有完全的访问权限,可以重置用户密码、分配用户权
安装VS Code软件 VS Code下载方式: 下载地址: https://code.visualstudio.com/updates/v1_85 图1 VS Code的下载位置 VS Code版本要求: 建议用户使用VS Code 1.85.2版本进行远程连接。 VS Code安装指导如下:
权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤2 修改训练超参配置 以 llama2-70b 和 llama2-13b
Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/v
Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/v
} } ] } 其中,加粗的斜体字段需要根据实际值填写: ma_endpoint为ModelArts的终端节点。 project_id为用户的项目ID。 X-auth-Token的值为获取到的Token值。 “dataset_name”为创建的数据集名称。 “dataset_
场景说明 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts,创建为模型。 本文详细介绍如何在ModelArts的开发环境Notebook中使用基础镜像构建一个新的推理镜像,并完成模型的创建,部署为在线服务。本案例仅适用于华为云北京四和上海一站点。
集成在线服务API至生产环境中应用 针对已完成调测的API,可以将在线服务API集成至生产环境中应用。 前提条件 确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTPS协议访问。ModelAr
面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“物体检测”AI模型的训练和部署。依据开发者提供的标注数据及选择的场景,无需
变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 g
在Notebook的JupyterLab中,支持从GitHub开源仓库Clone文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts Upload Files按钮,打开文件上传窗口,选择左侧的进入GitHub开源仓库Clone界面。
failed”。 原因分析 可能是所在环境的网络有问题,无法自动下载VS Code Server,请手动安装。 解决方法 打开VS Code,选择“Help>About”,并记下“Commit”的ID码。 确认创建Notebook实例使用的镜像的系统架构,可以在Notebook中打开Terminal,通过命令uname
Code,选择“Help>About”,并记下“Commit”的ID码。 确认创建Notebook实例使用的镜像的系统架构,可以在Notebook中打开Terminal,通过命令uname -m查看。 下载对应版本的vscode-server,根据Commit码和Notebook实例镜像架构下载。
低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取
Code,选择“Help>About”,并记下“Commit”的ID码。 确认创建Notebook实例使用的镜像的系统架构,可以在Notebook中打开Terminal,通过命令uname -m查看。 下载对应版本的vscode-server,根据Commit码和Notebook实例镜像架构下载。