检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型选择 选择已部署的模型。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值,核采样值可以限制模型选择这些高概率的词汇,从而控制输出内容的多样性。建议不要与温度同时调整。 温度 用于控制生成结果的随机性。调高温度,会使得模型的输出更具多样性和创
看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。
科技行业公司的最大利润和市值是多少? 科技行业公司的最小利润和市值是多少? 科技行业公司的中位利润和市值是多少? 科技行业公司的总利润和市值是多少? … 来源四:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,再基于大模型(比如盘古提供的任意一个规格的基础功能模
海洋气象数据通常来源于气象再分析。气象再分析是通过现代气象模型和数据同化技术,重新处理历史观测数据,生成高质量的气象记录。这些数据既可以覆盖全球范围,也可以针对特定区域,旨在提供完整、一致且高精度的气象数据。 再分析数据为二进制格式,具体格式要求详见表1。 表1 气象类数据集格式要求 文件内容
创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number is 0”报错 日志提示“root: XXX valid number is 0”,表示训练集/验证集的有效样本量为0,例如:
已经完成的预训练的基础上继续训练模型。增量预训练旨在使模型能够适应新的领域或数据需求,保持其长期的有效性和准确性。 微调阶段:基于预训练的成果,微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。这一阶段使模型能够精确执行如文案生成、代码生成和专业问
开启流式开关后,API会在生成文本的过程中,实时地将生成的文本发送给客户端,而不是等到生成完成后一次性将所有文本发送给客户端。 temperature 否 Float 用于控制生成文本的多样性和创造力。 取值接近0表示最低的随机性,1表示最高的随机性。一般来说,temperat
在“从资产选模型”选择所需模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒 订阅提醒 该功能
{1:'apple', 2:'orange', 3:'banana'} 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 请保持数据中训练集和验证集的标签数量一致。 父主题: 训练CV大模型
{1:'apple', 2:'orange', 3:'banana'} 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 请保持数据中训练集和验证集的标签数量一致。 父主题: 训练NLP大模型
{1:'apple', 2:'orange', 3:'banana'} 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 请保持数据中训练集和验证集的标签数量一致。 父主题: 训练预测大模型
多样性和一致性是评估LLM生成语言的两个重要方面。 多样性指模型生成的不同输出之间的差异。一致性指相同输入对应的不同输出之间的一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模型训练或生成过程中加入的惩罚项,旨在减少重复生成的可能性。通过在计算损失函数(用于优化模型的指标)时
均得分。 goodcase 模型生成句子与实际句子基于评估指标得到的评分后,统计得分为5分的占比。 badcase 模型生成句子与实际句子基于评估指标得到的评分后,统计得分1分以下的占比。 用户自定义的指标 由用户定义的指标,如有用性、逻辑性、安全性等。 父主题: 评测NLP大模型
回复内容的多样性。 图2 “核采样”参数为1的生成结果1 图3 “核采样”参数为1的生成结果2 将“核采样”参数调小至0.1,保持其他参数不变,单击“重新生成”,再单击“重新生成”,可以观察到模型前后两次回复内容的多样性降低。 图4 “核采样”参数为0.1的生成结果1 图5 “核采样”参数为0
搜索增强通过结合大语言模型与传统搜索引擎技术,提升了搜索结果的相关性、准确性和智能化。 例如,当用户提出复杂查询时,传统搜索引擎可能仅返回一系列相关链接,而大模型则能够理解问题的上下文,结合多个搜索结果生成简洁的答案,或提供更详细的解释,从而进一步改善用户的搜索体验。 温度 用于控制生成文本的多样性和创造力。调高温度会使得模型的输出更多样性和创新性。
合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通图片类数据集。 创建图片类数据集配比任务 创建图片类数据集配比任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
大模型生成文本的过程可视为一个黑盒,同一模型下对于同一个场景,使用不同的提示词也会获得不同的结果。提示工程是指在不更新模型参数的前提下,通过设计和优化提示词的方式,引导大模型生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决于模型能力及提示词质量。其中模型能力的更新需
其中,各参数介绍如下: 变量取值:输入参数的各个变量取值。取值可以是数据集中的字段变量,也可以自定义变量值。 保存至任务输出参数(可选):该参数为输出的结果。由于输出结果为问答对形式,因此生成的问题必须选择context参数,回答必须选择target参数。 模型选择:选择平台预置的大模型,用于指令合成。
合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通文本类数据集。 创建文本类数据集配比任务 创建文本类数据集配比任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
模型”页面,单击右上角的“导入模型”。 在“导入模型”页面,下载用户证书。 图1 下载用户证书 登录环境A的ModelArts Studio大模型开发平台,在“空间资产 > 模型 > 本空间”页面,单击支持导出的模型名称,右上角的“导出模型”。 在“导出模型”页面,选择需要导出的模型,应设置