检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
添加CDL的Ranger访问权限策略 操作场景 Ranger管理员可通过Ranger为CDL用户配置创建、执行、查询、删除权限。 前提条件 已安装Ranger服务且服务运行正常。 已创建需要配置权限的用户、用户组或Role。 操作步骤 使用Ranger管理员用户rangeradm
MapReduce统计样例程序开发思路 场景说明 假定用户有某个周末网民网购停留时间的日志文本,基于某些业务要求,要求开发MapReduce应用程序实现如下功能。 统计日志文件中本周末网购停留总时间超过2个小时的女性网民信息。 周末两天的日志文件第一列为姓名,第二列为性别,第三列为本次停留时间,单位为分钟,分隔符为“
什么是MapReduce服务 大数据是人类进入互联网时代以来面临的一个巨大问题:社会生产生活产生的数据量越来越大,数据种类越来越多,数据产生的速度越来越快。传统的数据处理技术,比如说单机存储,关系数据库已经无法解决这些新的大数据问题。为解决以上大数据处理问题,Apache基金会推
ALM-14013 NameNode FsImage文件更新失败 告警解释 HDFS的元数据信息存储在NameNode数据目录(由配置项“dfs.namenode.name.dir”指定)中的FsImage文件中。备NameNode会周期将已有的FsImage和JournalNo
records.action fail 以下是bad records的四种行为类型: FORCE:通过将bad records存储为NULL来自动更正数据。 REDIRECT:Bad records被写入carbon.badRecords.location配置路径下的CSV文件而不是被加载。
records.action fail 以下是bad records的四种行为类型: FORCE:通过将bad records存储为NULL来自动更正数据。 REDIRECT:Bad records被写入carbon.badRecords.location配置路径下的CSV文件而不是被加载。
MapReduce访问多组件样例代码 功能介绍 主要分为三个部分: 从HDFS原文件中抽取name信息,查询HBase、Hive相关数据,并进行数据拼接,通过类MultiComponentMapper继承Mapper抽象类实现。 获取拼接后的数据取最后一条输出到HBase、HDF
Spark2x基本原理 Spark2x组件适用于MRS 3.x及后续版本。 简介 Spark是基于内存的分布式计算框架。在迭代计算的场景下,数据处理过程中的数据可以存储在内存中,提供了比MapReduce高10到100倍的计算能力。Spark可以使用HDFS作为底层存储,使用户能
Hive服务进程非堆内存使用超出阈值 ALM-16009 Map数超过阈值 ALM-16045 Hive数据仓库被删除 ALM-16046 Hive数据仓库权限被修改 ALM-16047 HiveServer已从Zookeeper注销 ALM-16048 Tez或者Spark库路径不存在 ALM-16051
快速开发Kafka应用 Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量
MapReduce访问多组件样例代码 功能介绍 主要分为三个部分: 从HDFS原文件中抽取name信息,查询HBase、Hive相关数据,并进行数据拼接,通过类MultiComponentMapper继承Mapper抽象类实现。 获取拼接后的数据取最后一条输出到HBase、HDF
--insecure --negotiate 'https://10.64.35.144:9111/templeton/v1/status' 更改为 curl -i -u : --negotiate 'http://10.64.35.144:9111/templeton/v1/status'
Spark应用开发常用概念 基本概念 RDD 即弹性分布数据集(Resilient Distributed Dataset),是Spark的核心概念。指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用。 RDD的生成: 从HDFS输入
基于Kafka的Word Count数据流统计案例 应用场景 Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。
--insecure --negotiate 'https://10.64.35.144:9111/templeton/v1/status' 更改为 curl -i -u : --negotiate 'http://10.64.35.144:9111/templeton/v1/status'
Spark基本原理 Spark简介 Spark是一个开源的,并行数据处理框架,能够帮助用户简单、快速的开发大数据应用,对数据进行离线处理、流式处理、交互式分析等。 Spark提供了一个快速的计算、写入及交互式查询的框架。相比于Hadoop,Spark拥有明显的性能优势。Spark
MapReduce访问多组件样例代码 功能介绍 主要分为三个部分: 从HDFS原文件中抽取name信息,查询HBase、Hive相关数据,并进行数据拼接,通过类MultiComponentMapper继承Mapper抽象类实现。 获取拼接后的数据取最后一条输出到HBase、HDF
HDFS开源增强特性 HDFS开源增强特性:文件块同分布(Colocation) 离线数据汇总统计场景中,Join是一个经常用到的计算功能,在MapReduce中的实现方式大体如下: Map任务分别将两个表文件的记录处理成(Join Key,Value),然后按照Join Key
MapReduce访问多组件样例代码 功能介绍 主要分为三个部分: 从HDFS原文件中抽取name信息,查询HBase、Hive相关数据,并进行数据拼接,通过类MultiComponentMapper继承Mapper抽象类实现。 获取拼接后的数据取最后一条输出到HBase、HDF
Spark应用开发简介 Spark简介 Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言(Scala/Java/Python)的应用开发。 适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative