检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
安全 责任共担 资产识别与管理 身份认证与访问控制 数据保护技术 审计与日志 服务韧性 监控安全风险 故障恢复 更新管理 认证证书 安全边界
在Lite Cluster资源池上使用Snt9B完成推理任务 场景描述 本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新建一个终端作为客户端来访问并测试该在线服务的功能。
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,
{ "from": "function_call", "value": "工具参数" }, { "from": "observation
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,
{ "from": "function_call", "value": "工具参数" }, { "from": "observation
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,
创建Workflow数据集版本发布节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的版本自动发布的功能。数据集版本发布节点主要用于将已存在的数据集或者标注任务进行版本发布,每个版本相当于数据的一个快照,可用于后续的数据溯源。主要应用场景如下: 对于数据标注这种操作
GPU服务器上配置Lite Server资源软件环境 场景描述 本文旨在指导如何在GPU裸金属服务器上,安装NVIDIA、CUDA驱动等环境配置。由于不同GPU预置镜像中预安装的软件不同,您通过Lite Server算力资源和镜像版本配套关系章节查看已安装的软件。下面为常见的软件安装步骤
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,
GPU A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败 问题现象 在A系列GPU裸金属服务器上,系统环境是ubuntu20.04+nvidia515+cuda11.7,使用Pytorch2.0时出现如下错误: CUDA
通过自定义镜像创建模型失败 问题现象 通过用户自定义镜像创建模型失败。 原因分析 可能原因如下: 导入模型使用的镜像地址不合法或实际镜像不存在 用户给ModelArts的委托中没有SWR相关操作权限 用户为子账号,没有主账号SWR的权限 使用的是非自己账号的镜像 使用的镜像为公开镜像
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,
语言模型推理性能测试 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
Standard数据准备 在ModelArts数据集中添加图片对图片大小有限制吗? 如何将本地标注的数据导入ModelArts? 在ModelArts中数据标注完成后,标注结果存储在哪里? 在ModelArts中如何将标注结果下载至本地? 在ModelArts中进行团队标注时,为什么团队成员收不到邮件
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动