检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开发盘古大模型提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
横向比较提示词效果 设置候选提示词 横向比较提示词效果 父主题: 开发盘古大模型提示词工程
开发盘古大模型Agent应用 Agent开发平台介绍 编排与调用应用 编排与调用工作流 创建与管理插件 创建与管理知识库 Agent开发常见报错与解决方案
编排与调用应用 应用介绍 编排应用 调用应用 管理应用 父主题: 开发盘古大模型Agent应用
开发盘古NLP大模型 使用数据工程构建NLP大模型数据集 训练NLP大模型 压缩NLP大模型 部署NLP大模型 评测NLP大模型 调用NLP大模型
部署NLP大模型 创建NLP大模型部署任务 查看NLP大模型部署任务详情 管理NLP大模型部署任务 父主题: 开发盘古NLP大模型
调用NLP大模型 使用“能力调测”调用NLP大模型 使用API调用NLP大模型 统计NLP大模型调用信息 父主题: 开发盘古NLP大模型
开发盘古预测大模型 使用数据工程构建预测大模型数据集 训练预测大模型 部署预测大模型
开发盘古专业大模型 部署专业大模型
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、
Access Key):与访问密钥ID结合使用的密钥,对请求进行加密签名,可标识发送方,并防止请求被修改。 使用AK/SK认证时,您可以基于签名算法使用AK/SK对请求进行签名,也可以使用专门的签名SDK对请求进行签名。详细的签名方法和SDK使用方法请参见API签名指南。 如果之前没
着深远的影响。它是重要的水资源,提供了大量的饮用水和灌溉水。同时,长江也是中国重要的内河航道,对于货物运输和经济发展具有重要作用。长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古
欠费说明 在使用云服务时,如果账户的可用额度低于待结算账单金额,即被判定为账户欠费。欠费可能会影响云服务资源的正常运行,因此需要及时充值。预付费模式购买后不涉及欠费。 服务按时长计费的,当余额不足以支付当前费用时,账户将被判定为欠费。由于盘古NLP大模型不涉及物理实体资源,因此无
华为云:负责云服务自身的安全,提供安全的云。华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS类云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华为云基础设施和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。
业大模型的模型推理功能, 模型实例可用于预测、科学计算大模型的模型推理功能。 具体订购步骤如下: 使用主账户登录ModelArts Studio大模型开发平台,单击“立即订购”进入“订购”页面。 在“开发场景”中勾选需要订购的大模型(可多选),页面将根据勾选情况适配具体的订购项。
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确、更有针对性的输出,从而提高模型在特定任务上的性能。 在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造 。如果提示词模板满足不了使用需求可再单独创建。 提示词模板可在平台“Agent
训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制