检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
0” 原因分析 出现该问题的可能原因如下: pytorch1.4引擎与之前pytorch1.3版本兼容性问题。 处理方法 在images之后添加contigous。 images = images.cuda() pred = model(images.permute(0, 3,
监控安全风险 ModelArts支持监控ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作,帮助用户更好地了解服务和模型的各项性能指标。详细内容请参见ModelArts支持的监控指标。 父主题: 安全
输出参数名称获取参数信息。 如果需在训练中获取“train_url”、“data_url”和“test”参数的值,可在训练作业的启动文件中添加以下代码获取: import argparse parser = argparse.ArgumentParser() parser.add
Arts Lite DevServer 支持配置的存储方案请参考配置Lite Server存储。其中访问方式中,可支持在裸金属服务器中挂载的有弹性文件服务SFS和云硬盘EVS。 父主题: 准备工作
Arts Lite DevServer 支持配置的存储方案请参考配置Lite Server存储。其中访问方式中,可支持在裸金属服务器中挂载的有弹性文件服务SFS和云硬盘EVS。 父主题: 准备工作
Arts Lite DevServer 支持配置的存储方案请参考配置Lite Server存储。其中访问方式中,可支持在裸金属服务器中挂载的有弹性文件服务SFS和云硬盘EVS。 父主题: 准备工作
delArts Lite Server 支持配置的存储方案请参考配置Lite Server存储。其中访问方式中,可支持在裸金属服务器中挂载的有弹性文件服务SFS和云硬盘EVS。 父主题: 准备工作
Arts Lite DevServer 支持配置的存储方案请参考配置Lite Server存储。其中访问方式中,可支持在裸金属服务器中挂载的有弹性文件服务SFS和云硬盘EVS。 父主题: 准备工作
Arts Lite DevServer 支持配置的存储方案请参考配置Lite Server存储。其中访问方式中,可支持在裸金属服务器中挂载的有弹性文件服务SFS和云硬盘EVS。 父主题: 准备工作
Arts Lite DevServer 支持配置的存储方案请参考配置Lite Server存储。其中访问方式中,可支持在裸金属服务器中挂载的有弹性文件服务SFS和云硬盘EVS。 父主题: 准备工作
粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q smoothquant 或者 --quantization smoothquant
粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q smoothquant 或者 --quantization smoothquant
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step6 启动推理服务,在启动服务时添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化
默认为1。 service_name:服务名称,保存评测结果时创建目录,示例为:qwen-14b-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:服务接口地址,若服务部署在notebook中,该地址为"http://127
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)
集;使用自定义数据集时,请更新代码目录下data/dataset_info.json文件;请务必在dataset_info.json文件中添加数据集描述。 关于数据集文件的格式及配置,请参考data/README_zh.md的内容。可以使用HuggingFace/ModelScope上的数据集或加载本地数据集。
#启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda