检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AbstractLLM<LLMResp> { /** * 初始化 * * @param llmConfig llm参数配置 */ public CustomLLM(LLMConfig llmConfig) { super(llmConfig);
部署边缘模型 进入盘古大模型套件平台,进入“模型开发 > 模型部署 > 边缘部署”,单击右上角“部署”按钮。 在创建部署页面选择模型与部署资产,选择部署方式为边缘部署,输入推理实例数(根据边缘资源池的实际资源选择),输入服务名称,单击“立即创建”。 创建成功后,可在“模型部署 >
在创建数据集弹出框中选择“创建一个训练数据集”,单击“创建”。 图2 创建训练数据集 进入训练数据集页面后,需要进行训练配置、数据配置和基本配置。 训练配置 选择模型类型、训练类型以及基础模型。 数据配置 选择训练数据集和配比类型,设置训练数据集配比,详情请参考数据配比功能介绍。 在训练数据集配比完成
登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型评估”。 单击任务名称查看模型评估任务详情。包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。 图2 任务详情 评估报告: 任务状
安装Ascend插件 详情请参考官方文档:https://www.hiascend.com/document/detail/zh/mindx-dl/50rc1/dluserguide/clusterscheduling/dlug_scheduling_02_000001.html
调用边缘模型 调用边缘模型的步骤与使用“在线部署”调用模型的步骤相同,具体步骤请参考使用API调用模型。 父主题: 部署为边缘服务
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
'EQUAL-TO'}]}}"} 判断数据中的JSON参数是否与Query中的参数对应上。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size)
创建一个新的数据集 检测数据集质量 清洗数据集 发布数据集 模型开发套件 模型开发套件是盘古大模型的核心组件,提供从模型创建到部署的一站式解决方案。该套件具备模型管理、训练、评估、压缩、部署、推理和迁移等功能,支持模型的自动化评估,确保模型的高性能和可靠性。 通过高效的推理性能和跨平台迁移工具,模
取Token”接口。并填写请求Header参数。 接口地址为:https://iam.cn-southwest-2.myhuaweicloud.com/v3/auth/tokens 请求Header参数名为Content-Type,参数值为application/json 图2 填写获取Token接口
、PaaS和SaaS类云服务内部的安全以及对租户定制配置进行安全有效的管理,包括但不限于虚拟网络、虚拟主机和访客虚拟机的操作系统,虚拟防火墙、API网关和高级安全服务,各项云服务,租户数据,以及身份账号和密钥管理等方面的安全配置。 《华为云安全白皮书》详细介绍华为云安全性的构建思
"description")) .build()); 定义一个ToolRetriever包含ToolProvider和向量数据库配置2个参数。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvider
CacheStoreConfig # redis缓存配置写入2s后到期 redis_cache = Caches.of("redis", CacheStoreConfig(expire_after_write=2)) # inMemory缓存配置缓存窗口数量为3,访问后2s到期 memory_cache
功能描述 阶段 相关文档 1 盘古大模型正式公测上线 盘古大模型是集数据管理、模型训练和模型部署于一体的一站式大模型开发与应用平台。平台支持大模型的定制开发,提供全生命周期工具链,帮助开发者高效构建与部署模型,企业可灵活选择适合的服务与产品,轻松实现模型与应用的开发。 公测 产品介绍 2
args_schema。工具入参类型,为重要参数,入参继承BaseModel的类型需额外指定,简单类型无需指定。 return_type。指定工具返回类型,为可选参数,如_run方法未指定返回类型时必选。 如果输入输出参数为复杂类型,则需要通过继承BaseModel定义复杂类型的参数描述,此时input
是正常的。若Loss曲线呈现轻微阶梯式下降,为正常现象。 模型持续优化: 本场景采用了下表中的推理参数进行解码,您可以在平台部署后参考如下参数调试: 表3 推理核心参数设置 推理参数 设置值 最大Token限制(max_token) 4096 温度(temperature) 0.3
思考:好的,我将更新"company_name"参数为"金财互联数据服务有限公司",并添加"nsrsbh"参数为"91440101MA59JN5456"。现在,我将再次调用工具。 行动:使用工具[risk_detection],传入参数{"report_type": "欠税信息体检"
oolean,建议参数数量不超过5个。 @AgentToolParam注解说明: description。参数的描述,为重要参数。该描述直接影响LLM对入参的提取,尽量描述清楚,如果Agent实际执行效果不符合预期,可以调整。 required。是否为可选参数。 注意:字段的命名
流。 通用文本(文本补全)(/text/completions) Java、Python、Go、.NET、NodeJs 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求
部署盘古大模型 部署为在线服务 部署为边缘服务