检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
- 是否有Linux内核驱动 是否有业务相关的Linux内核驱动代码。 - 依赖第三方组件列表 当前业务依赖的第三方软件列表(自行编译的第三方软件列表)。 例如:Faiss等。 - 推理框架 TensorRT/Triton/MSLite等。
请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
当资源池处于驱动升级状态时,该资源池无法进行重置节点操作。 GPU和NPU规格,重置节点完成后,节点可能会出现驱动升级的现象,请耐心等待。 图10 操作记录 重启节点 资源池详情页的“节点”页签中提供节点重启的功能。单击操作列的“重启”,可实现对单个节点的重启。
用于升级、回滚gpu驱动,插件依赖gpu-beta版本。
myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241112192643-c45ac6b 镜像发布到SWR,从SWR拉取 固件驱动
为什么选择不了Ascend Snt3资源? 由于Ascend Snt3资源有限,当资源售罄后,您在部署上线时,无法选择Ascend Snt3资源(公共资源池)进行推理,即在部署页面中,“Ascend: 1* Snt3 (8GB) | ARM: 3 核 6GB”资源为灰色,无法选择。
请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240528150158-b521cc0 镜像发布到SWR,从SWR拉取 固件驱动
请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240606190017-b881580 镜像发布到SWR,从SWR拉取 固件驱动
DevServer驱动版本要求23.0.6 PyTorch版本:2.1.0 确保容器可以访问公网。 文档更新内容 6.3.908版本相对于6.3.907版本新增如下内容: 文档和代码中新增对mistral和mixtral模型的适配,并添加训练推荐配置。
适配的CANN版本是cann_8.0.rc3,驱动版本是23.0.6。 本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持以下模型的训练,如表1所示。
DevServer驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
订阅算法物体检测YOLOv3_ResNet18(Ascend)训练失败报错label_map.pbtxt cannot be found 问题现象 使用订阅算法物体检测YOLOv3_ResNet18(Ascend) 进行训练作业,训练失败报错label_map.pbtxt cannot
镜像适配的Cann版本是cann_8.0.rc3,驱动版本是23.0.6。 确保集群可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。
Lite Server驱动版本要求23.0.6 PyTorch版本:2.1.0 确保容器可以访问公网。 文档更新内容 6.3.909版本相对于6.3.908版本新增如下内容: 文档中新增对Llama3.1的适配。 ModelLink框架和MindSpeed已升级到最新版本。