检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
ig.json文件中选取一个api路径用于此次推理;如使用ModelArts提供的预置推理镜像,则此接口为“/”。 mapping_type 是 String 输入数据的映射类型,可选“file”或“csv”。 file指每个推理请求对应到输入数据目录下的一个文件,当使用此方式时
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
Python版本:3.10 确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
要涉及以下三项。 统一存储:output_storage对象的default值,需填写一个已存在的OBS路径,路径格式为:/OBS桶名称/文件夹路径/。 数据集对象:使用准备数据集章节下载的数据集即可,填写相应的数据集名称以及版本号。 训练资源规格:配置计算资源。由于举例的算法只
awq --clone PyTorch-2.1.0 conda activate awq 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 python examples/quantize.py --model-path
transformers cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 #
说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的模型列表和权重文件 本方案支持vLLM的v0.5.0版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称
Qwen2.5-72B √ x Qwen2.5-32B √ √ 前提条件 在“我的模型”页面存在已创建成功的模型。 已准备好用于存放压缩后模型权重文件的OBS桶,OBS桶必须和MaaS服务在同一个Region下。 创建压缩作业 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
因流量限控,获取在线服务的IP和端口号次数有限制,每个主账号租户调用次数不超过2000次/分钟,每个子账号租户不超过20次/分钟。 目前仅支持自定义镜像导入模型,部署的服务支持高速访问通道。 操作步骤 使用VPC直连的高速访问通道访问在线服务,基本操作步骤如下: 将专属资源池的网络打通VPC VPC下创建弹性云服务器
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称
不同区域支持的AI引擎有差异,请以实际环境为准。 推理支持的AI引擎 在ModelArts创建模型时,如果使用预置镜像“从模板中选择”或“从OBS中选择”导入模型,则支持如下常用引擎及版本的模型包。 标注“推荐”的Runtime来源于统一镜像,后续统一镜像将作为主流的推理基础镜像。统一镜像中的安
如下以删除实例ID为“6fa459ea-ee8a-3ca4-894e-db77e160355e”的实例为例。 DELETE https://endpoint/v1/{project_id}/demanager/instances/6fa459ea-ee8a-3ca4-894e-db77e160355e 响应示例 成功响应示例
awq --clone PyTorch-2.1.0 conda activate awq 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 python examples/quantize.py --model-path