检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ingFace的目录格式。即上传的HuggingFace权重文件存放目录。如果使用了量化功能,则使用量化章节转换后的权重。如果使用的是训练后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
ingFace的目录格式。即上传的HuggingFace权重文件存放目录。如果使用了量化功能,则使用量化章节转换后的权重。如果使用的是训练后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
app_url/boot_file_url和engine_id无需填写。 boot_file_url 是 String 训练作业的代码启动文件,需要在代码目录下。如:“/usr/app/boot.py”。应与app_url一同出现,若填入model_id则app_url/boot
仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
子用户进行相应的权限配置,限制某些资源的管理,实现权限最小化。 模型管理 使用从训练或者从OBS中选择创建模型,推荐用户使用动态加载的方式导入,动态加载实现了模型和镜像的解耦,便于进行模型资产的保护。用户需要及时更新模型的相关依赖包,解决开源或者第三方包的漏洞。模型相关的敏感信息
准备工作 准备资源 本教程案例是基于ModelArts Standard运行,需要购买ModelArts专属资源池。 准备权重 准备对应模型的权重文件。 准备代码 准备AscendCloud-3rdLLM-6.3.905-xxx.zip和AscendCloud-OPP-6.3.905-xxx
Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称
Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.3版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称
删除算法 功能介绍 删除算法。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v2/{project_id}/algorithms/{algorithm_id}
oAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
transformers cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers