检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
语义分割2D Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.jpg | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054
语义分割3D Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.pcd | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054
语义分割点云标注任务 语义分割任务是指根据标注规范将待标注点云图像中出现的天空、道路、车辆等类标注物进行标注。 图1 语义分割点云标注任务 绘制对象 单击大规模3D语义分割任务,单击任意一帧,进入人工标注。 单击左侧标注工具栏,选择对应的标注工具。 选择对应的标注类别。 绘制标注物。
语义分割图片标注任务 语义分割任务是指根据标注规范将待标注图片中出现的天空、道路、车辆等类标注物进行标注。 图1 语义分割图片标注任务 绘制对象 绘制多边形。 选择左侧工具栏多边形按钮,(快捷键4,非小键盘)绘制多边形。 图2 绘制多边形 选择标注。 标注列表页选择符合的标注。 图3
预标注功能:此处选择“目标检测”。 添加文件:上传本地点云文件。只能选择PCD点云文件,文件大小不能超过7MB。 目标分割 图2 文件上传 预标注功能:此处选择“目标分割”。 添加文件:上传本地点云文件。只能选择PCD点云文件,文件大小不能超过2MB。 单击“确认”,生成相关返回值。
2D预标注 2D预标注当前支持目标检测、车道线检测和语义分割(混合)多种预标注功能。其中,目标检测主要用于鱼眼图片的预标注;语义分割(混合)不仅支持鱼眼图片,还支持普通图片的预标注;车道线检测能够快速标注车道线的位置和类别。 2D预标注默认使用服务内置的初始模型部署的在线服务,您
式和部分常见开源数据集格式,以下为各类别模型的数据集支持列表和示例。 目标检测2D 目标检测3D 目标追踪2D 目标追踪3D 语义分割2D 语义分割3D 车道线检测 分类 父主题: 模型评测
快速在平台展开标注。 人车类型图片标注任务 2.5D人车图片标注任务 点云标注任务 点云跟踪标注任务 车道线图片标注任务 语义分割图片标注任务 语义分割点云标注任务 2D3D关联标注任务 语音标注任务 文本标注任务 父主题: 标注服务
保存了每个预测对象的基本信息。 { "labels":[] } 其中规模3D大规模点云分割任务还包含“label_ext”字段,具体参考“3D大规模点云分割”。 { "labels":[], "labels_ext":{} }
模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务
} }, … … ] } 其中3D大规模点云分割任务还包含“labels_ext”和“predict_labels_ext”字段,具体参考“3D大规模点云分割”。 { "labels":[], "labels_ext":{
es、instance_categories时,value值是数据集中所有的标注类型名称(允许中文,不允许遗漏某个标注类型),按语义分割和实例分割,分开统计后的值。例如:instance_categories:“交通警示物,骑行者,其它车辆,两轮车,消防栓,柱子,地面标识,限位块
类别:可选择“内置”或“用户”,选择相对应的类别。 选择“内置”,支持“分类”、“2D目标检测”、“3D目标检测”、“2D目标追踪”、“3D目标追踪”“2D语义分割”、“3D语义分割”、“车道线检测”八个类别。 选择“用户”,则不允许选择内置评测项,仅可使用用户自定义评测。 资源规格:当前项目中可用的资源规格,
标注形状 表1 标注形状示例 标注形状 适用场景(示例) 适用于人车、红绿灯等矩形框标注 适用于车道线等直线或折线标注 适用于道路特征提取、语义分割等不规则图形标注 适用于2.5D数据标注 适用于点云等3D矩形框标注 说明: 标注:需人工选择标注,并进行标注。 智能缩框标注:智能缩进标注框。
json”文件中必须包含label_counts和labels字段信息。3D语义分割类的“.json”文件中必须包含label_counts,labels和labels_ext字段信息。3D语义分割类的“.json”文件中必须包含label_counts和labels,label
ources.list可替换 COPY /path/to/sources.list /etc/apt/sources.list RUN apt-get install vim # 按需安装用户算法环境。如果需要修改~/.pip/pip.conf可替换。用户也可安装miniconda进行包管理
ANNOTATION_MANUAL(人工标注) ANNOTATION_AI(预标注) ANNOTATION_SEGMENTATION(交互式分割) COMMON_DATASET(数据集) spec 否 String 资源规格:1、GPU型:{GPU型号}{GPU个数}Gpu{CPU核数}Core_{内存大小}GiB
类别:可选择“内置”或“用户”,选择相对应的类别。 选择“内置”,支持“分类”、“2D目标检测”、“3D目标检测”、“2D目标追踪”、“3D目标追踪”“2D语义分割”、“3D语义分割”、“车道线检测”八个类别。 选择“用户”,则不允许选择内置评测项,仅可使用用户自定义评测。 资源规格:当前项目中可用的资源规格,
真实场景转仿真场景能力。最大可管理500TB数据。 自动驾驶标注云服务-基础版 最大支持100个在线标注用户数支持2D、3D目标标注、语义分割、连续帧标注、融合标注,具有满足自动驾驶所需的标注工具,支持预标注。 自动驾驶训练云服务-基础版 支持算法管理、模型管理、自动驾驶相关的模型评测、badcase、可视化报告等。
sources.list可替换 COPY /path/to/sources.list /etc/apt/sources.list RUN apt-get install vim # 安装用户算法环境。如果需要修改~/.pip/pip.conf可替换。用户也可安装miniconda进行包管理