检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模
且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型能够捕捉语言中的细微差别和复杂模式,无论是在词汇使用、语法结构,还是语义理解上,都能达到令人满意的精度。此外,模型具备自我学习和不断进化的能力,随着新数据的持续输入,其性能和适应性不断提升,确保在多变的语言环境中始终保持领先地位。
计算资源,而通过提示工程,可以在不对模型能力进行更新的前提下,有效激发模型能力。 “提示词撰写” 和“提示工程”有什么区别 提示词撰写实际上是构建一些问答对数据,用于模型的训练,会更新模型参数,而提示工程不涉及模型训练,仅通过提示词的优化来达到提升模型输出效果的目标。 什么是好的提示词
如何利用提示词提高大模型在难度较高推理任务中的准确率? 如何让大模型按指定风格或格式回复? 如何分析大模型输出错误回答的根因? 为什么其他大模型适用的提示词在盘古大模型上效果不佳? 更多 技术专题 技术、观点、课程专题呈现 云图说 通过云图说,带您了解华为云 OCR基础课程 介绍文字识别服务的产品、技术指导和使用指南
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。
[category1',category2', ...],// 所有类别名称的列表,每个类别对应一个 label,用于标注视频中的事件或动作。 'database': { 'video_name':{ // 训练集 train 测试集 test。
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。
节点配置完成后,单击“确定”。 连接结束节点和其他节点。 步骤11:试运行工作流 工作流编排完成后,单击右上角“试运行”,在对话框中输入问题,等待返回试运行结果。 在试运行过程中,可以单击右上角“”查看运行日志,包括运行结果与调用详情。 如果试运行失败,常见报错与解决方案请详见Agent开发常见报错与解决方案。
输入。 { "query": "预定15:00到16:00的A12会议室" } 单击Postman界面“Send”,发送请求。当接口返回状态为200时,表示应用API调用成功,响应示例如下: data:{"event":"start","data":{},"createdTime":1733821291867