检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分析ModelArts数据集中的数据特征 基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 您还可以选择数据集的多个版本,查看其可视化曲线,进行对比分析。 背景信息 只有“图片”的数据集,且版本标注类型为“物体检测”和“图像分类”的数据集版本支持数据特征分析。
“队列名称”:系统自动将当前账号下的DLI队列展现在列表中,您可以在下拉框中选择您所需的队列。 “数据库名称”:根据选择的队列展现所有的数据库,请在下拉框中选择您所需的数据库。 “表名称”:根据选择的数据库展现此数据库中的所有表。请在下拉框中选择您所需的表。 DLI的详细功能说明,请参见《DLI用户指南》。
SDXL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础
SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
SDXL基于DevServer适配PyTorch NPU的LoRA训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL LoRA训练是指在已经训练好的SDXL模型基础上,使用新的
FlUX.1基于DevServer适配PyTorch NPU推理指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。官方提供了三个版本:FLUX.1-pro、FLUX.1-dev和FLUX.1-schnell。 方案概览 本方案介绍了在ModelArts
创建导出任务 将当前数据集的样本导出到指定的OBS路径下。仅支持图像分类、物体检测、图像分割和自由格式数据集。 dataset.export_data(path) 示例代码 导出数据集到OBS目录 from modelarts.session import Session from
divided by 4, (counting in double words, 32 bits), received on all VLs from the port. counting in double words, 32 bits ≥0 NA NA NA 网卡发送数据总量 ma
0:普通集群 1:安全集群 cluster_name String MRS集群名称。可登录MRS控制台查看。 database_name String 导入表格数据集,数据库名字。 input String 表格数据集,HDFS路径。例如/datasets/demo。 ip String
导出ModelArts数据集中的数据到AI Gallery 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出到AI Gallery。用户可以通过任务历史查看数据导出的历史记录。发布到AI Gallery中的数据集,可以设置是否公开,将数据集公开给其他人使用。
在统一身份认证服务控制台的左侧菜单栏中,选择“权限管理> 权限”。单击右上角“创建自定义策略”,“策略名称”为“Policy1”或“Policy2”,策略配置方式选择JSON视图,输入策略内容,单击“确定”。 创建自定义策略时,建议将项目级云服务和全局级云服务拆分为两条策略,便于授权时设置最小授权范围。了解更多。
FLUX.1基于DevSever适配PyTorch NPUFintune&Lora训练指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend
FLUX.1基于DevServer适配PyTorch NPU推理指导(6.3.909) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。官方提供了三个版本:FLUX.1-pro、FLUX.1-dev和FLUX.1-schnell。 方案概览 本方案介绍了在ModelArts
训练作业训练失败报错:TypeError: unhashable type: ‘list’ 问题现象 使用订阅算法图像分类-EfficientNetB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。
数据标注中,难例集如何定义?什么情况下会被识别为难例? 难例是指难以识别的样本,目前只有图像分类和检测支持难例。 父主题: Standard数据管理
导出ModelArts数据集中的数据为新数据集 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。本章主要介绍将ModelArts数据集中的数据为新数据集的方式,新导出的数据集可直接在ModelArts控制台数据集列表中显示。
使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类
0:普通集群 1:安全集群 cluster_name String MRS集群名称。可登录MRS控制台查看。 database_name String 导入表格数据集,数据库名字。 input String 表格数据集,HDFS路径。例如/datasets/demo。 ip String
理残留目录导致,即: 镜像里面“/var/lib/cloud/instances”残留了制作镜像机器(后面称模板机)的实例ID信息,如果制作镜像不清理“/var/lib/cloud/*”就会导致用该镜像再重装模板机时,cloud-init根据残留目录(含实例ID)判断已经执行过一
in position 324: illegal multibyte sequence”报错。 粘贴完代码后,建议检查代码文件是否出现中文注释变为乱码的情况,如果出现该情况请将编辑器改为utf-8格式后再粘贴代码。 在本地电脑中创建训练脚本“train.py”,内容如下: # base