检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础上
在统一身份认证服务控制台的左侧菜单栏中,选择“权限管理> 权限”。单击右上角“创建自定义策略”,“策略名称”为“Policy1”或“Policy2”,策略配置方式选择JSON视图,输入策略内容,单击“确定”。 创建自定义策略时,建议将项目级云服务和全局级云服务拆分为两条策略,便于授权时设置最小授权范围。了解更多。
分析ModelArts数据集中的数据特征 基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 您还可以选择数据集的多个版本,查看其可视化曲线,进行对比分析。 背景信息 只有“图片”的数据集,且版本标注类型为“物体检测”和“图像分类”的数据集版本支持数据特征分析。
训练场景和方案介绍 Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展SDXL和SD1.5模
SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.908) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL LoRA是指在已经训练好的SDXL模型基础上,使用新的数据集进行LoRA微调。
FlUX.1基于DevServer适配PyTorch NPU推理指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。官方提供了三个版本:FLUX.1-pro、FLUX.1-dev和FLUX.1-schnell。 方案概览 本方案介绍了在ModelArts
SDXL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础
SDXL基于DevServer适配PyTorch NPU的LoRA训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL LoRA训练是指在已经训练好的SDXL模型基础上,使用新的
SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
FLUX.1基于DevSever适配PyTorch NPUFintune&Lora训练指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend
FLUX.1基于DevServer适配PyTorch NPU推理指导(6.3.909) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。官方提供了三个版本:FLUX.1-pro、FLUX.1-dev和FLUX.1-schnell。 方案概览 本方案介绍了在ModelArts
训练作业训练失败报错:TypeError: unhashable type: ‘list’ 问题现象 使用订阅算法图像分类-EfficientNetB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。
创建导出任务 将当前数据集的样本导出到指定的OBS路径下。仅支持图像分类、物体检测、图像分割和自由格式数据集。 dataset.export_data(path) 示例代码 导出数据集到OBS目录 from modelarts.session import Session from
导出ModelArts数据集中的数据到AI Gallery 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出到AI Gallery。用户可以通过任务历史查看数据导出的历史记录。发布到AI Gallery中的数据集,可以设置是否公开,将数据集公开给其他人使用。
in position 324: illegal multibyte sequence”报错。 粘贴完代码后,建议检查代码文件是否出现中文注释变为乱码的情况,如果出现该情况请将编辑器改为utf-8格式后再粘贴代码。 在本地电脑中创建训练脚本“train.py”,内容如下: # base
资产识别与管理 资产识别 用户在AI Gallery中的资产包括用户发布的AI资产以及用户提供的一些个人信息。 AI资产包括但不限于文本、图形、数据、文章、照片、图像、插图、代码、AI算法、AI模型等。 用户的个人信息包括: 用户注册时提供的昵称、头像、邮箱。 用户参加实践时提供的姓名、手机号、邮箱。
使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类
导出ModelArts数据集中的数据为新数据集 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。本章主要介绍将ModelArts数据集中的数据为新数据集的方式,新导出的数据集可直接在ModelArts控制台数据集列表中显示。
in position 324: illegal multibyte sequence”报错。 粘贴完代码后,建议检查代码文件是否出现中文注释变为乱码的情况,如果出现该情况请将编辑器改为utf-8格式后再粘贴代码。 在本地电脑中创建训练脚本“train.py”,内容如下: # base
数据标注中,难例集如何定义?什么情况下会被识别为难例? 难例是指难以识别的样本,目前只有图像分类和检测支持难例。 父主题: Standard数据管理