检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
senet层压缩比例,最小值2 save_format 否 String 模型保存格式 loss_function 否 String 损失函数 loss_param 否 String 损失函数参数json字符串 响应参数 状态码: 200 表6 响应Body参数 参数 参数类型 描述 job_instance_id
行日志。 连接器(Connector) 连接器是可信智能计算节点内置的连接特定数据源所需的对象模板,目前支持连接MRS Hive、MySQL、RDS、DWS、ORACLE等多种连接器,并支持扩展增加新的连接器。 数据集(Data set) 数据集为计算节点获取并配置的合作方数据的元数据信息,以及附加其上的隐私策略。
链代码背书的组织名称必须选择organization。 发起方按照链代码管理章节中“实例化链代码”部分的描述,完成实例化链代码操作。 注意事项: “初始化函数”参数值须为“init”。 “背书策略”勾选“任意组织背书” 完成上述步骤后用户可前往区块浏览器查看上链的初始化日志信息。 父主题: 准备工作
senet层压缩比例,最小值2 save_format 否 String 模型保存格式 loss_function 否 String 损失函数 loss_param 否 String 损失函数参数json字符串 启动作业后会生成一条新的历史作业记录。 等待执行完成,在“历史作业”页面查看更详细的作业运行信息,包括执行结果、作业报告。
senet层压缩比例,最小值2 save_format 否 String 模型保存格式 loss_function 否 String 损失函数 loss_param 否 String 损失函数参数json字符串 响应参数 状态码: 200 表7 响应Body参数 参数 参数类型 描述 job_instance_id
数据类型,DWS.DWS类型数据集,LOCAL_CSV.本地文件类型数据集,MRS.HIVE类型数据集,MYSQL.MySql类型数据集,ORACLE.Oracle类型数据集,RDS.RDS类型数据集 description String 描述 id String 数据集id name String
行日志。 连接器(Connector) 连接器是可信智能计算节点内置的连接特定数据源所需的对象模板,目前支持连接MRS Hive、MySQL、RDS、DWS、ORACLE等多种连接器,并支持扩展增加新的连接器。 数据集(Data set) 数据集为计算节点获取并配置的合作方数据的元数据信息,以及附加其上的隐私策略。
senet层压缩比例,最小值2 save_format 否 String 模型保存格式 loss_function 否 String 损失函数 loss_param 否 String 损失函数参数json字符串 图9 常规参数配置(XGBoost) 图10 常规参数配置(逻辑回归/FiBiNET) 图11
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
是否必选 参数类型 描述 dataset_type 是 String 数据集类型,按照传入枚举类型,返回所属作业类型的数据集。例如:传入MYSQL,返回分析作业可用的数据集;传入LOCAL_CSV,返回学习作业可用数据集 agent_id 否 String 可信计算节点id,最大32位,由字母和数字组成
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
包括缺失值数量、最大值、最小值以及分布图。 图4 描述性统计 执行预处理。单击列表字段后的添加预处理方法,系统将利用所选的预处理方法(转换函数)将特征数据转换成更加适合算法模型的特征数据。当前TICS支持的特征预处理方法如表1所示。对于一个字段,可以添加多种预处理方法,并且建议按照如下处理顺序进行编排:
支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算; 支持控制流和数据流的分离,用
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
String 作业、任务状态:1.新建,2.已接收,3.运行中,4.成功,5.失败,6.终止 result String json格式:records 记录数;obs_path 文件存放地址; execute_time 执行时间 job_id String 作业id。 支持数字,英文字母,下划线,长度32。
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]