检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: generate_dataset.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 python generate_dataset
查询算法列表 功能介绍 查询算法列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/algorithms 表1 路径参数 参数
控制采样的随机性的浮点数。较低的值使模型更加确定性,较高的值使模型更加随机。0表示贪婪采样。 stop 否 None None/Str/List 用于停止生成的字符串列表。返回的输出将不包含停止字符串。 例如:["你","好"],生成文本时遇到"你"或者"好"将停止文本生成。 stream
温度/Temperature 设置推理温度。 数值较高,输出结果更加随机。 数值较低,输出结果更加集中和确定。 取值范围:0~2 默认值:1 核采样/top_p 设置推理核采样。调整输出文本的多样性,数值越大,生成文本的多样性就越高。 取值范围:0.1~1 默认值:1 top_k
训练和部署。依据开发者提供的标注数据及选择的场景,无需任何代码开发,自动生成满足用户精度要求的模型。可支持图片分类、物体检测、预测分析、声音分类等场景。可根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型。 费用说明:本案例使用过程中,从AI Gallery下载
功能介绍 查询训练作业镜像保存任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/training-jobs/{train
ain/alpaca_data.json 使用generate_dataset.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools
ain/alpaca_data.json 使用generate_dataset.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools
说明 取值样例 温度/Temperature 设置推理温度。 数值较高,输出结果更加随机。 数值较低,输出结果更加集中和确定。 1 核采样/top_p 设置推理核采样。调整输出文本的多样性,数值越大,生成文本的多样性就越高。 1 top_k 选择在模型的输出结果中选择概率最高的前K个结果。
根据指定条件分页查询满足条件的所有镜像。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/images 表1 路径参数 参数 是否必选
功能介绍 创建训练作业镜像保存任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/training-jobs/{trai
功能介绍 查询训练作业指定任务的运行指标。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/training-jobs/{train
Controlnet训练 使用文本提示词可以生成一副精美的画作,然而无论再怎么精细地使用提示词来指导模型,也无法描述清楚人物四肢的角度、背景中物体的位置、光线照射的角度,使用Controlnet可以通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet
运行结果将存储在output文件夹中,如果用户指定了output_path,会指定位置保存,如果不指定则在当前代码执行目录生成文件夹保存输出。整体运行的结果都存放在output文件夹中,每转一次模型就会根据模型名称以及相关参数生成结果文件,如下图所示。 图3 output文件 在每次运行的结果文件中,分为三部分:c
create_time Long 训练作业创建时间戳,单位为毫秒,创建成功后由ModelArts生成返回,无需填写。 user_name String 训练作业创建用户的用户名,创建成功后由ModelArts生成返回,无需填写。 annotations Map<String,String> 训练作业高级功能配置,可选取值如下:
0:普通集群 1:安全集群 cluster_name String MRS集群名称。可登录MRS控制台查看。 database_name String 导入表格数据集,数据库名字。 input String 表格数据集,HDFS路径。例如/datasets/demo。 ip String
启动团队标注任务 功能介绍 启动团队标注任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset_i
--top_p 0.9 \ --recompute 执行以下脚本,生成文本。 sh ./generate_text.sh 若回显信息如下,则表示生成文本完成。 图8 生成文本完成信息 查看模型生成的文本文件。 cat unconditional_samples.json 回显信息如下:
更新团队标注任务 功能介绍 更新团队标注任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v2/{project_id}/datasets/{dataset_id
控制采样的随机性的浮点数。较低的值使模型更加确定性,较高的值使模型更加随机。0表示贪婪采样。 stop 否 None None/Str/List 用于停止生成的字符串列表。返回的输出将不包含停止字符串。 例如:["你","好"],生成文本时遇到"你"或者"好"将停止文本生成。 stream