检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型配置文件编写说明 模型开发者发布模型时需要编写配置文件config.json。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。 配置文件格式说明 配置文件为JSON格式,参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 描述
创建训练作业 创建一个训练作业,选择可用的数据集版本,并使用前面编写完成的训练脚本。训练完成后,将生成模型并存储至OBS中。 创建训练作业 管理模型 编写推理代码和配置文件 针对您生成的模型,建议您按照ModelArts提供的模型包规范,编写推理代码和配置文件,并将推理代码和配置文件存储至训练输出位置。
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──
准备W8A8权重 前提条件 已完成准备BF16权重。 W8A8量化权重生成 介绍如何将BF16权重量化为W8A8的权重,具体操作步骤如下。 在Server机器上创建权重量化后的存放目录${path-to-file}/deepseekV3-w8a8或${path-to-file}/deepseekR1-w8a8目录。
示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/saved_dir_for_output/ 该路径下统一保存生成的CKPT、PL
示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/saved_dir_for_output/ 该路径下统一保存生成的CKPT、PL
程。 TRAIN_ITERS SN / GBS * EPOCH 非必填。表示训练step迭代次数,根据实际需要修改。 SEED 1234 随机种子数。每次数据采样时,保持一致。 SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 模型参数设置规定 TP张量并行
程。 TRAIN_ITERS SN / GBS * EPOCH 非必填。表示训练step迭代次数,根据实际需要修改。 SEED 1234 随机种子数。每次数据采样时,保持一致。 模型参数设置规定 TP张量并行 、PP流水线并行、CP context并行的参数设置:TP×PP×CP
程。 TRAIN_ITERS SN / GBS * EPOCH 非必填。表示训练step迭代次数,根据实际需要修改。 SEED 1234 随机种子数。每次数据采样时,保持一致。 模型参数设置规定 TP张量并行 、PP流水线并行、CP context并行的参数设置:TP×PP×CP
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
Kubernetes的临时存储卷,临时卷会遵从Pod的生命周期,与Pod一起创建和删除。 使用临时存储路径 HostPath 适用于以下场景: 容器工作负载程序生成的日志文件需要永久保存。 需要访问宿主机上Docker引擎内部数据结构的容器工作负载。 节点存储。多个容器可能会共享这一个存储,会存在写冲突的问题。
f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval