检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
对于昇腾硬件的适配与支持。对AI有使用诉求的企业、NLP领域开发者,可以借助这个库,便捷地使用昇腾算力进行自然语言理解(NLU)和自然语言生成(NLG)任务的SOTA模型开发与应用。 支持的模型结构框架 AI Gallery的Transformers库支持的开源模型结构框架如表1所示。
单击“添加授权”后,系统会引导您为特定用户或所有用户进行委托配置,通常默认会创建一个名为“modelarts_agency_<用户名>_随机ID”的委托条目。在权限配置的区域,您可以选择ModelArts提供的预置配置,也可以自定义选择您所授权的策略。如果这两种形态对于您的诉求
推理启动脚本run_vllm.sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm.sh run_vllm
单击“添加授权”后,系统会引导您为特定用户或所有用户进行委托配置,通常默认会创建一个名为“modelarts_agency_<用户名>_随机ID”的委托条目。在权限配置的区域,您可以选择ModelArts提供的预置配置,也可以自定义选择您所授权的策略。当然如果这两种形态对于您的
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
Workflow运行流程 项目类型介绍 图像分类 图像分类项目,是对图像进行分类。需要添加图片并对图像进行分类标注,完成图片标注后开始模型训练,即可快速生成图像分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“
推理启动脚本run_vllm.sh制作请参见•创建推理脚本文件run_vllm.sh。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm.sh run_vllm
推理启动脚本run_vllm.sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm.sh run_vllm
denoising_end 二阶段去噪,非必选 refiner_switch refiner模型开关,是否开启refiner,非必选 seed 添加噪音的随机数种子,非必选 image_path 带controlnet时需要,此时image_path需要赋值null,传入图片的base64编码值,非必选
service_name 服务名称,支持1-64位可见字符(含中文),名称可以包含字母、中文、数字、中划线、下划线。 说明: 该字段不填时默认为自动生成的服务名称。 否 str、Placeholder description 服务备注,默认为空,不超过100个字符。 否 str vpc_id
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
搜索指标的名称。需要与您在代码中打印的搜索指标参数保持一致。 优化方向 可选“最大化”或者“最小化”。 指标正则 填入正则表达式。您可以单击智能生成功能自动获取正则表达式。 设置自动化搜索参数 从已设置的“超参”中选择可用于搜索优化的超参。优化的超参仅支持float类型,选中自动化搜索参数后,需设置取值范围。
steps=[model_registration] ) 上述案例中,系统会自动获取订阅模型中的自定义镜像,然后结合输入的OBS模型路径,注册生成一个新的模型,其中model_obs可以替换成JobStep的动态输出。 model_type支持的类型有:"TensorFlow"、"MXNet"、"Caffe"、
会首先下载模型文件到/home/ma-user/.cache目录下,然后启动推理步骤。 图1 启动脚本 运行结束后,可以看到当前目录下生成了对应尺寸的图像。 图2 推理生成的图像 步骤四 Diffusers使能多实例共享权重功能 进入AIGC插件解压路径,安装昇腾云torch插件。 pip install
bird"}' 执行成功显示: 图2 执行成功显示 在浏览器输入http://{宿主机ip}:8183,可以访问前端页面,通过输入文字生成图片。 图3 输入文字生成图片 注意需要勾选Enable Flash Attention按钮。 图4 Enable Flash Attention优化按钮
# 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true # 保持不动,pod间互相通信使用及生成一些必要环境变量 maxRetry:
<NNODES=1> <NODE_RANK=0> sh scripts/llama2/0_pl_sft_13b.sh localhost 1 0 训练完成后,生成的权重文件保存路径为:/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/。