检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Sun.ttf 2. 将 文件 /home/ma-user/work/model-dir/Qwen-VL-Chat/tokenization_qwen.py 中的 30-35 行注释 3. 然后增加一行直接读取本地的Simsun.ttf文件,写绝对路径 # FONT_PATH
eption(resp, 'file or directory or bucket not found.')”。 原因:Moxing在进行文件复制时,未找到train_data_obs目录。 处理建议:修改train_data_obs目录为正确地址,重新启动训练作业。 另外在Mo
精度调优前准备工作 在定位精度问题之前,首先需要排除训练脚本及参数配置等差异的干扰。目前大部分精度无法对齐的问题都是由于模型超参数、Python三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
change to running in five minutes 紧急 Mount volume failed; Check if vpc of sfs-turbo is interconnected if the instance cannot change to running in five
推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
解决? GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error 使用SFS盘出现报错rpc_check_timeout:939 callbacks suppressed 华为云CCE集群纳管GPU裸金属服务器由于
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
able.json文件和使用实例个数的local_ranktable.json文件;如果指定了`--api-server`,还会生成一个local_ranktable_host.json文件用于确定服务入口实例。 ./save_dir 生成ranktable文件如下(假设本地主机ip为10
会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务。另外,当启动服务时的模型或者参数发生改变时,请删除
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
MLLM多模态模型训练推理 Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912) Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912) Qwen-VL基于Lite Server适配PyTorch
类型。例如本案例使用的数据集,系统匹配为“图片”类型。 数据集输出位置:用来存放输出的数据标注的相关信息,或版本发布生成的Manifest文件等。单击图标选择OBS桶下的空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 数据集输入位置:用来存放源数据集信息,例如本案例中从AI
“运行日志输出”开启后,不支持关闭。 LTS服务提供的日志查询和日志存储功能涉及计费,详细请参见了解LTS的计费规则。 请勿打印无用的audio日志文件,这会导致系统日志卡死,无法正常显示日志,可能会出现“Failed to load audio”的报错。 您可以进入批量服务的详情页面,通
模型包里面必须包含“model”文件夹,“model”文件夹下面放置模型文件,模型配置文件,模型推理代码文件。 模型文件:在不同模型包结构中模型文件的要求不同,具体请参见模型包结构示例。 模型配置文件:模型配置文件必须存在,文件名固定为“config.json”,有且只有一个,模型配置文件编写请参见模型配置文件编写说明。
目前支持runc和containerd作为镜像构建环境,默认是runc。 buildkitctl(客户端):负责解析Dockerfile文件,并向服务端buildkitd发出构建请求。 下载并解压buildkit程序。 # 下载 buildkit 工具,注意使用的是0.15.1
训练作业、算法的规格信息。 表26 algorithm 参数 参数类型 描述 code_dir String 算法启动文件所在目录绝对路径。 boot_file String 算法启动文件绝对路径。 inputs inputs object 算法输入通道信息。 outputs outputs object
module name 'unidecode'” 问题现象 从mindspore开源gitee中master分支下载的tacotron2模型,修改配置文件后上传ModelArts准备训练,日志报错提示:No module name 'unidecode'。 原因分析 requirements
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers