检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ECS服务器挂载SFS Turbo存储 本小节介绍如何在ECS服务器挂载SFS Turbo存储,挂载完成后可在后续步骤中,将训练所需的数据通过ECS上传至SFS Turbo。 前提条件 已创建SFS Turbo,如果未创建,请参考创建文件系统。 数据及算法已经上传至OBS,如果未
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。
"FixNorm", "GridSearch", "TPE" ] }, { "algorithm_type_en" : "nas", "algorithm_type_zh" : "algorithm_type_zh to translate", "algorithm_names"
训练的数据集预处理说明 以 llama2-13b 举例,使用训练作业运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
输出:单击“增加训练输出”,将模型保存到OBS中。参数名称为output,数据存储位置选择OBS桶中制定文件夹,例如sdxl-train/checkpoint,获取方式选择环境变量,/home/ma-user/modelarts/outputs/output_0下的模型文件会保存到OBS中。 图4 选择镜像
更多”下拉框中可见“关联sfsturbo”和“解除关联”。其中,“关联sfsturbo”用于将此网络与某个选定的SFS Turbo资源做关联操作,关联完成后,表示SFS Turbo与网络已进行打通,可在训练和开发环境等功能时使用此SFS Turbo。 关联与解除关联操作需要用户委
修改和迭代。 针对专属池场景 由于专属池支持SFS挂载,因此代码、数据的导入会更简单,甚至可以不用再关注OBS的相关操作。 可以直接把SFS的目录直接挂载到调试节点的"/mnt/sfs_turbo"目录,或者保证对应目录的内容和SFS盘匹配。 调试时建议使用接近的方式,即:启动容
访问密钥”中,单击“新增访问密钥”。 在“新增访问密钥”弹窗中,填写该密钥的描述说明,单击“确定”。根据提示单击“立即下载”,下载密钥。密钥文件会直接保存到浏览器默认的下载文件夹中,文件名为“credentials.csv”,可打开文件查看访问密钥(Access Key Id和Secret Access
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。
修改和迭代。 针对专属池场景 由于专属池支持SFS挂载,因此代码、数据的导入会更简单,甚至可以不用再关注OBS的相关操作。 可以直接把SFS的目录直接挂载到调试节点的"/mnt/sfs_turbo"目录,或者保证对应目录的内容和SFS盘匹配。 调试时建议使用接近的方式,即:启动容
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
output_path: 要保存的结果路径。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结
output_path: 要保存的结果路径。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
训练专属资源池如何与SFS弹性文件系统配置对等链接? 配置训练专属资源池与SFS弹性文件系统的对等链接,需要资源池打通VPC,使得资源池与SFS弹性文件系统所配置的VPC相同。配置完成后,在创建训练作业时,就可以看到SFS的配置选项。 打通VPC步骤请参考打通VPC。 父主题: Standard资源池