检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
升级为WebSocket:打开开关 图2 升级为WebSocket 单击“下一步”,确认配置后“提交”,完成在线服务的部署。返回在线服务列表页,查看服务状态变为“运行中”,表示服务部署成功。 WebSocket在线服务调用 WebSocket协议本身不提供额外的认证方式。不管自定义镜像
创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo。 单击用户创建的SFS Turbo,查看基本信息图4,找到并复制挂载命令。 在ECS的终端中粘贴SFS Turbo挂载命令,完成挂载。 挂载完成后,可通过后续的步骤获取到代码和数
String 用户指定的network名称。 os.modelarts/workspace.id String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表12 NetworkMetadataAnnotations
创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo。 单击用户创建的SFS Turbo,查看基本信息图4,找到并复制挂载命令。 在ECS的终端中粘贴SFS Turbo挂载命令,完成挂载。 挂载完成后,可通过后续的步骤获取到代码和数
创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo。 单击用户创建的SFS Turbo,查看基本信息图4,找到并复制挂载命令。 在ECS的终端中粘贴SFS Turbo挂载命令,完成挂载。 挂载完成后,可通过后续的步骤获取到代码和数
通过Token认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。在集成至生产环境之前,需要对此API进行调测,您可以使用以下方式向在线服务发起预测请求: 方
创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo。 单击用户创建的SFS Turbo,查看基本信息图4,找到并复制挂载命令。 在ECS的终端中粘贴SFS Turbo挂载命令,完成挂载。 挂载完成后,可通过后续的步骤获取到代码和数
创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo。 单击用户创建的SFS Turbo,查看基本信息图4,找到并复制挂载命令。 在ECS的终端中粘贴SFS Turbo挂载命令,完成挂载。 挂载完成后,可通过后续的步骤获取到代码和数
#检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是id、url、title和text。可以指定–json-key标志来选择用于训练的列。
自定义镜像使用场景 在AI业务开发以及运行的过程中,一般都会有复杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换
#检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 训练 预训练/微调 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 预训练/微调 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是id、url、title和text。可以指定–json-key标志来选择用于训练的列。
json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是id、url、title和text。可以指定–json-key标志来选择用于训练的列。
> 弹性集群Cluster”页面中的Standard资源池页签中,单击“购买AI专属资源池”,选择“计费模式”为“包年/包月”,在页面左下角查看所需费用。 计费周期 包年/包月资源的计费周期是根据您购买的时长来确定的(以北京时间为准)。一个计费周期的起点是您开通或续费资源的时间(精
准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.909)
己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 预训练/微调 介绍如何进行训练,包括训练数据处理、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)
准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.910)