检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类。 针对已标注数据,文本分类的标注对象和标签在一个文本文件内,标注对象与标签之间,采用Tab键分隔,多个标签之间采用英文逗号分隔。 例如,文本文件的内容如下所示。标注对象与标注内容之间采用Tab键分隔。
表示物体检测信息,多个物体标注会有多个object体。 name:必选字段,标注内容的类别。 pose:必选字段,标注内容的拍摄角度。 truncated:必选字段,标注内容是否被截断(0表示完整)。 occluded:必选字段,标注内容是否被遮挡(0表示未遮挡)。 difficult:必选字段,标注目标是否难以识别(0表示容易识别)。
定义预处理 使用通用单模板工作流上传模板图片后,需要对模板图片进行预处理,通过旋转、裁剪、降噪等操作。图片预处理的目的是保留图片的关键内容,去掉冗余部分,保持图片内容清晰可见,保证模型识别的准确性。 前提条件 已在文字识别套件控制台选择“通用单模板工作流”新建应用,并上传模板图片,详情请见上传模板图片。
定义预处理 使用多模板分类工作流上传模板图片后,需要对模板图片进行预处理,通过旋转、裁剪、降噪等操作。图片预处理的目的是保留图片的关键内容,去掉冗余部分,保持图片内容清晰可见,保证模型识别的准确性。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”新建应用,并上传模板图片,详情请见上传模板图片。
识别区是对应字段内容所在区域。在框选时,建议尽量扩大识别区的框选范围使其覆盖对应字段内容可能出现的区域,防止在不同图片识别时出现漏字。 本样例框选的识别区如图10所示。 图10 框选识别区 在右侧“框选识别区”中填写“框选字段”,选择“字段类型”。 本样例的框选字段可按框选内容自己定义,字段类型均可选择“常规”。
最终提取内容为“2020.1.1”。 提取 对经过“预处理”的文字进行关键字符提取。 在输入框中填写查找关键字符的正则表达式。 不填写时,默认提取全部字段。 如果需要多个提取规则,单击新增提取规则。提取时按从上到下优先级规则提取,选择第一个非空的提取内容作为提取后的内容。 后处理
最终提取内容为“2020.1.1”。 提取 对经过“预处理”的文字进行关键字符提取。 在输入框中填写查找关键字符的正则表达式。 不填写时,默认提取全部字段。 如果需要多个提取规则,单击新增提取规则。提取时按从上到下优先级规则提取,选择第一个非空的提取内容作为提取后的内容。 后处理
由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。 针对文本分类场景,是对文本的内容按照标签进行分类处理,标签名是由中文、大小写字母、数字、中划线或下划线组成,且不超过32位的字符串。 进入数据标注页面 在“数据选择”页面
识别区是对应字段内容所在区域。在框选时,建议尽量扩大识别区的框选范围使其覆盖对应字段内容可能出现的区域,防止在不同图片识别时出现漏字。 本样例框选的识别区如图12所示。 图12 框选识别区 在右侧“框选识别区”中填写“框选字段”,选择“字段类型”。 本样例的框选字段可按框选内容自己定义,字段类型均可选择“常规”。
工作流介绍 工作流简介 在钢铁厂中,钢板的材质、热处理工艺以及使用环境等外界因素均会影响钢板的使用寿命,而这些外界因素导致钢板缺陷。研究钢板表面的缺陷类型对钢板的使用寿命至关重要,ModelArts Pro提供热轧钢板表面缺陷检测工作流,提供高精度钢板表面缺陷识别算法,提高钢板表面缺陷检测场景上线效率。
表示物体检测信息,多个物体标注会有多个object体。 name:必选字段,标注内容的类别。 pose:必选字段,标注内容的拍摄角度。 truncated:必选字段,标注内容是否被截断(0表示完整)。 occluded:必选字段,标注内容是否被遮挡(0表示未遮挡) difficult:必选字段,标注目标是否难以识别(0表示容易识别)。
表示物体检测信息,多个物体标注会有多个object体。 name:必选字段,标注内容的类别。 pose:必选字段,标注内容的拍摄角度。 truncated:必选字段,标注内容是否被截断(0表示完整)。 occluded:必选字段,标注内容是否被遮挡(0表示未遮挡) difficult:必选字段,标注目标是否难以识别(0表示容易识别)。
表示物体检测信息,多个物体标注会有多个object体。 name:必选字段,标注内容的类别。 pose:必选字段,标注内容的拍摄角度。 truncated:必选字段,标注内容是否被截断(0表示完整)。 occluded:必选字段,标注内容是否被遮挡(0表示未遮挡) difficult:必选字段,标注目标是否难以识别(0表示容易识别)。
表示物体检测信息,多个物体标注会有多个object体。 name:必选字段,标注内容的类别。 pose:必选字段,标注内容的拍摄角度。 truncated:必选字段,标注内容是否被截断(0表示完整)。 occluded:必选字段,标注内容是否被遮挡(0表示未遮挡) difficult:必选字段,标注目标是否难以识别(0表示容易识别)。
的模型,建议每个分类标签准备100个以上的数据。 文本分类的标注对象和标注内容在一个文本文件内,标注对象与标注内容之间,多个标注内容之间可分别指定分隔符。 例如,文本文件的内容如下所示。标注对象与标注内容之间采用Tab键分隔。 手感很好,反应速度很快,不知道以后怎样 positive
每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example │ IMG_20180919_114732.jpg │
每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example │ IMG_20180919_114732.jpg │
每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example │ IMG_20180919_114732.jpg │
部署服务 模型准备完成后,您可以部署服务,开发属于自己的语种文本分类应用,此应用用于分类自己所上传的文字内容,也可直接调用对应的API。 前提条件 已在自然语言处理套件控制台选择“多语种文本分类工作流”新建应用,并评估模型,详情请见评估模型。 由于部署服务涉及ModelArts功能,需消耗资源,要确保账户未欠费。
部署服务 模型准备完成后,您可以部署服务,开发属于自己的文本分类应用,此应用用于分类自己所上传的文字内容,也可直接调用对应的API。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并评估模型,详情请见评估模型。 由于部署服务涉及ModelArts功能,需消耗资源,要确保账户未欠费。