通过智能标注方式标注数据 创建智能标注作业 确认智能标注作业的数据难例 使用自动分组智能标注作业 父主题: 标注ModelArts数据集中的数据
入门案例:快速创建一个物体检测的数据集 本节以准备训练物体检测模型的数据为例,介绍如何针对样例数据,进行数据分析、数据标注等操作,完成数据准备工作。在实际业务开发过程中,可以根据业务需求选择数据管理的一种或多种功能完成数据准备。此次操作分为以下流程: 准备工作 创建数据集 数据分析 数据标注 数据发布 数据导出
部署模型为在线服务 模型准备完成后,您可以将模型部署为在线服务,对在线服务进行预测和调用。 约束与限制 单个用户最多可创建20个在线服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 由于在线运行需消耗资源,确保账户未欠费。 部署服务操作需要镜
通过团队标注方式标注数据 团队标注使用说明 创建和管理团队 创建团队标注任务 审核并验收团队标注任务结果 管理团队和团队成员 父主题: 标注ModelArts数据集中的数据
完成参数解析后,用户使用“data_url”、“train_url”代替算法中数据来源和数据输出所需的路径。 在使用预置框架创建算法时,根据1中的代码参数设置定义的输入输出参数。 训练数据是算法开发中必不可少的输入。“输入”参数建议设置为“data_url”,表示数据输入来源,也支持用户根据1的算法代码自定义代码参数。
下载完成后,将数据上传至SFS相应目录中。由于数据集过大,推荐先通过obsutil工具将数据集传到OBS桶后,再将数据集迁移至SFS。 在本机机器上运行,通过obsutil工具将本地数据集传到OBS桶。 # 将本地数据传至OBS中 # ./obsutil cp ${数据集所在的本地文件夹路径}
数据集版本不合格 出现此问题时,表示数据集版本发布成功,但是不满足自动学习训练作业要求,因此出现数据集版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。
比NPU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问题,对比相同模型在迭代前后版本的API计算数值,进行问题定位。 首先通过在PyTorch训练脚本中插入dump接口,跟踪计
参考上传文件,将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 创建数据集 数据准备完成后,需要创
GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 场景描述 本文指导如何进行节点内NVLINK带宽性能测试,适用的环境为:Ant8或者Ant1 GPU裸金属服务器, 且服务器中已经安装相关GPU驱动软件,以及Pytorch2.0。 GPU A系列裸金属服务器
仍然发现账号还在计费。 有以下几种可能情况: 因为您在使用ModelArts过程中,将数据上传至OBS进行存储,OBS会根据实际存储的数据进行计费。建议前往OBS管理控制台,清理您不再使用的数据、文件夹以及OBS桶,避免产生不必要的费用。 您在创建Notebook时,选择了云硬盘
发布时是否需要解析子样本序号,用于医疗数据集。可选值如下: true:解析子样本序号 false:不解析子样本序号(默认值) include_dataset_data Boolean 发布时是否包含数据集源数据。可选值如下: true:包含数据集源数据 false:不包含数据集源数据 is_current
表1 创建数据集 参数名称 说明 英文名称 必填项,数据集的英文名称。 如果没有填写“中文名称”,则资产发布后,在数据集页签上会显示该“英文名称”。 中文名称 数据集的中文名称。 如果填写了“中文名称”,则资产发布后,在数据集页签上会显示该“中文名称”。 许可证 数据集资产遵循的
”、“语音分割”类型的数据集。 针对启用团队标注功能的数据标注任务,支持创建团队标注任务,将标注任务指派给不同的团队,由多人完成标注任务。同时,在成员进行数据标注过程中,支持发起验收、继续验收以及查看验收报告等功能。 团队标注功能是以团队为单位进行管理,数据集启用团队标注功能时,
启动智能标注前,保证当前系统中不存在正在进行中的智能标注任务。 检查用于标注的图片数据,确保您的图片数据中,不存在RGBA四通道图片。如果存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。 启动智能标注作业 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备 >
新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。推荐用户使用该方式进行训练。 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中
任务验收(管理员) 发起验收 当团队的成员已完成数据标注,标注作业的创建者可发起验收,对标注结果进行抽验。只有当标注成员存在标注完成的数据时,才可以发起验收,否则发起验收按钮为灰色。 录ModelArts管理控制台,在左侧菜单栏中选择“数据准备 >数据标注”,打开数据标注管理页。 选择“我参与的”
1:安全集群 cluster_name String MRS集群名称。可登录MRS控制台查看。 database_name String 导入表格数据集,数据库名字。 input String 表格数据集,HDFS路径。例如/datasets/demo。 ip String 用户GaussDB(DWS)集群的IP地址。
推理精度测试 本章节介绍如何进行推理精度测试,建议在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。若需要在生产环境中进行推理精度测试,请通过调用接口的方式进行测试。 Step1 执行精度测试 精度测试需要数据集进行测试。推荐公共数据集mmlu和ceva
查询数据处理的算法类别 功能介绍 查询数据处理的算法类别。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/processor-tasks/items
您即将访问非华为云网站,请注意账号财产安全