检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
预置可训练模板 HiLens套件提供可训练技能模板开发技能,无需代码,只需自主上传训练数据,快速训练高精度算法模型,并且一键部署至设备。 当前HiLens套件提供HiLens安全帽检测技能,支持自主上传图片数据,构建高精度安全帽检测模型,快速开发安全帽检测技能,实现园区自动检测工人未戴安全帽的行为。
说明 详细指导 准备数据 在使用通用实体抽取工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS中。 准备数据 选择数据 在使用通用实体抽取工作流开发应用时,您需要新建或导入数据集,后续训练模型操作是基于您选择的数据集。 选择数据 训练模型 选择训练数据后,基于已标注的
说明 详细指导 准备数据 在使用通用文本分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS中。 准备数据 选择数据 在使用通用文本分类工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 选择数据 标注数据(可选) 由于模型训
调用时,如果出现ModelArts.4204报错,请参见ModelArts.4204服务未开通报错进行处理。 SDK调用 本章节以Python SDK为例介绍如何进行使用,其他语言SDK使用方法相同。 获取SDK。 在自定义OCR的“部署”页面,选择“SDK调用”获取SDK。 图2 获取SDK 导入
选择“所属行业”和“选择工作流”。当前自然语言处理提供“通用文本分类工作流”、“多语种文本分类工作流”、“通用实体抽取工作流”等。 资源配置 分别选择“数据处理资源”和“模型训练资源”,即用于数据处理和模型训练的资源池和资源类型。 资源池可选“公共资源池”和“专属资源池”。 “公共资源池”:提供公共的大规模计算集
作流”、“云状识别工作流”、“刹车盘识别工作流”等。 图4 工作流配置 资源配置 图5 资源配置 分别选择“数据处理资源”、“模型训练资源”、“测试资源部署”,即用于数据处理、模型训练和在线测试的资源池和资源类型。 资源池可选“公共资源池”和“专属资源池”。 “公共资源池”:提供
在使用刹车盘识别工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练刹车盘类型识别模型,并查看训练的模型准确率和误差的变化。
息就是训练数据集,您可以查看“数据集名称”、“描述”、“数据量”、“标注进度”、“标签总数”、“创建时间”和“操作”,其中“操作”列可执行“管理”和“删除”操作。 “管理”:进入数据集管理页面,单击“开始标注”,可手动标注数据。 “删除”:单击“删除”,弹出“删除数据集”对话框,单击“确认”,即可删除当前数据集。
在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 默认进入“应用总览”页签。 您可以在“应用总览”页查看应用开发、更新应用版本;也可以切换页签,查看应用资产(数据集)、应用监控。 图1 应用总览 查看应用开发配置 在“应用总览”页签,在开发版本列表选择工作流版本,单击“操作”列的“查看”,进入应用开发页
”、“更新时间”和可执行的“操作”。 图3 历史版本 查看应用资产 在“应用详情”页的“应用资产”页签下,可以查看当前应用的资产信息,比如通用文本分类工作流中的资产信息就是训练数据集,您可以查看“数据集名称”、“描述”、“数据量”、“标注进度”、“标签总数”、“创建时间”和“操作
在使用通用图像分类工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练图像分类模型,并查看训练的模型准确率和误差的变化。 训练模型
型操作是基于您选择的训练数据集。 选择数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练安全帽检测模型。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1值等,能
详细指导 准备数据 在使用多语种文本分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS中。 准备数据 选择数据 在使用多语种工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 选择数据 训练模型 选择训练数据后,基于已标注
评估模型 工作流会用测试数据评估模型,在“应用开发>评估模型”页面,查看评估结果。 模型评估 图1 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。 评估参数对比 图2 评估参数对比 左侧是各个标签数据的精确率、召回率、F1值。勾选
在使用云状识别工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练云状类型识别模型,并查看训练的模型准确率和误差的变化。 训练模型
详细评估 在“模型评估”页面,您可以查看测试集中数据模型预测结果。 “详细评估”左侧显示标注标签,右侧显示第二相交并比指标较低的图片。 图2 详细评估 模拟在线测试 在“模型评估”页面,您可以在线测试当前模型,即通过上传测试图片,查看当前模型的预测结果。 待服务构建完成,单击
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
单击“添加对比版本”,在 “添加对比版本”下拉框选择之前已经训练完成的数据进行对比。 详细评估 “详细评估”下方显示各个标签下准确率,即对应标签下预测正确的样本数占该标签下样本总数比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如