检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自动停止参数,如表10 auto_stop字段数据结构说明所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 failed_reasons Object 创建、启动失败失败原因,如表16所示。 extend_params
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
otebook、训练作业、推理在线服务)时,可以为这些任务配置标签,通过标签实现资源的多维分组管理。 标签详细用法请参见ModelArts如何通过标签实现资源分组管理。 说明: 可以在标签输入框下拉选择TMS预定义标签,也可以自己输入自定义标签。预定义标签对所有支持标签功能的服务
failed_reasons Object 创建、启动失败原因,如表22所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 extend_params Map<String,String> 扩展参数。 表20 storage定义数据结构说明
0条。数据集示例如下,单轮对话也可以复用此格式。您可以单击下载,获取示例数据集“simple_moss.jsonl”,该数据集可以用于文本生成类型的模型调优。 {"conversation_id": 1, "chat": {"turn_1": {"Human":"text","MOSS":"text"}
“未标注”和“全部”页签中,标签的信息也将随着标注步骤进行更新,如增加的标签名称、各标签对应的图片数量。 图2 添加标签 如果您还不太清楚如何进行标注,可参考数据集详情页面的“标注样例说明”完成标注。 登录ModelArts管理控制台,选择“数据准备 > 数据标注”进入数据标注页。
steps=[model_registration] ) 上述案例中,系统会自动获取订阅模型中的自定义镜像,然后结合输入的OBS模型路径,注册生成一个新的模型,其中model_obs可以替换成JobStep的动态输出。 model_type支持的类型有:"TensorFlow"、"MXNet"、"Caffe"、
create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: #
SDK)是对ModelArts服务提供的REST API进行的Python封装,以简化用户的开发工作。用户直接调用ModelArts SDK即可轻松启动AI训练以及生成模型并将其部署为在线服务。 在Notebook中,无需鉴权配置,可直接使用ModelArts SDK,可以完成OBS管理、训练作业管理、模型管理以及在线服务管理。
是 训练源代码的OBS路径。 --data-url String 是 训练数据的OBS路径。 --log-url String 是 存放训练生成日志的OBS路径。 --train-instance-count String 是 训练作业实例数,默认是1,表示单节点。 --boot-file
的先安装,写在后面的后安装),且支持线下wheel包安装(wheel包必须与模型文件放在同一目录)。示例请参考导入模型时安装包依赖配置文件如何书写? health 否 health数据结构 镜像健康接口配置信息,只有“model_type”为“Image”时才需填写。 如果在滚动
法的输入输出管道。可以按照实例指定“data_url”和“train_url”,在代码中解析超参分别指定训练所需要的数据文件本地路径和训练生成的模型输出本地路径。 “job_config”字段下的“parameters_customization”表示是否支持自定义超参,此处填true。
return F.log_softmax(x) def Mnist(model_path, **kwargs): # 生成网络 model = Net() # 加载模型 if torch.cuda.is_available():