检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。
--int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。
表示训练step迭代次数,根据实际需要修改。 SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权
表示训练step迭代次数,根据实际需要修改。 SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权
0:普通集群 1:安全集群 cluster_name String MRS集群名称。可登录MRS控制台查看。 database_name String 导入表格数据集,数据库名字。 input String 表格数据集,HDFS路径。例如/datasets/demo。 ip String
CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVid
--model-path:原始模型权重路径。 --quantize-model:体现此参数表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系
--model-path:原始模型权重路径。 --quantize-model:体现此参数表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系
Attention 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(32GB),约耗时9.3秒。 图2 生成图片耗时(2)
MoXing如何访问文件夹并使用get_size读取文件夹大小? 问题现象 使用MoXing无法访问文件夹。 使用MoXing的“get_size”读取文件夹大小,显示为0。 原因分析 使用MoXing访问文件夹,需添加参数:“recursive=True”,默认为False。 处理方法
在ModelArts自动学习中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。
在ModelArts的Notebook中使用MoXing时,如何进行增量训练? 在使用MoXing构建模型时,如果您对前一次训练结果不满意,可以在更改部分数据和标注信息后,进行增量训练。 “mox.run”添加增量训练参数 在完成标注数据或数据集的修改后,您可以在“mox.run
在ModelArts上如何提升训练效率并减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减
Cluster资源池如何进行NCCl Test? ModelArts提供AI诊断功能,用户可以通过NCCl Test,测试节点GPU状态,并且测试多个节点间的通信速度。 操作步骤 单击资源池名称,进入资源池详情。 单击左侧“AI组件管理 > AI诊断”。 单击“诊断”,选择“日志上传路径”和NCCL
Notebook无法执行代码,如何处理? 当Notebook出现无法执行时,您可以根据如下几种情况判断并处理。 如果只是Cell的执行过程卡死或执行时间过长,如图1中的第2个和第3个Cell,导致第4个Cell无法执行,但整个Notebook页面还有反应,其他Cell也还可以单击
在ModelArts的Notebook中,如何使用昇腾多卡进行调试? 昇腾多卡训练任务是多进程多卡模式,跑几卡需要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8
表示训练step迭代次数,根据实际需要修改。 SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权
训练和部署。依据开发者提供的标注数据及选择的场景,无需任何代码开发,自动生成满足用户精度要求的模型。可支持图片分类、物体检测、预测分析、声音分类等场景。可根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型。 费用说明:本案例使用过程中,从AI Gallery下载
SAVE_INTERVAL 1000 【可选】用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
练作业,则该用户必须拥有 "modelarts:trainJob:create" 的权限才可以完成操作(无论界面操作还是API调用)。关于如何给一个用户赋权(准确讲是需要先将用户加入用户组,再面向用户组赋权),可以参考IAM的文档《权限管理》。 而ModelArts还有一个特殊的