检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
会话对象,初始化方法请参考Session鉴权。 表2 get_framework_list成功响应参数说明 参数类型 描述 List 引擎规格参数列表,请参见表3。 表3 framework_list参数说明 参数 参数类型 描述 framework_type String 引擎类型。
托管数据集到AI Gallery AI Gallery上每个资产的文件都会存储在线上的AI Gallery存储库(简称AI Gallery仓库)里面。每一个数据集实例视作一个资产仓库,数据集实例与资产仓库之间是一一对应的关系。例如,模型名称为“Test”,则AI Gallery仓
HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS Turbo内的目录与OBS对象存储桶进行关联,然后通过创建导入导出任务实现数据同步。通过OBS与SFS Turbo存储联动,可以将最新的训练数据导入到SFS
HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS Turbo内的目录与OBS对象存储桶进行关联,然后通过创建导入导出任务实现数据同步。通过OBS与SFS Turbo存储联动,可以将最新的训练数据导入到SFS
建算法请参考使用预置框架创建算法。创建训练作业请参考创建训练作业指导。 解析输入路径参数、输出路径参数 运行在ModelArts的模型读取存储在OBS服务的数据,或者输出至OBS服务指定路径,输入和输出数据需要配置3个地方: 训练代码中需解析输入路径参数和输出路径参数。ModelArts推荐以下方式实现参数解析。
使用ModelArts进行AI模型开发时,您需要将数据上传至对象存储服务(OBS)桶中。您可以登录OBS管理控制台创建OBS桶,并在您创建的OBS桶中创建文件夹,然后再进行数据的上传,OBS上传数据的详细操作请参见《对象存储服务快速入门》。 您在创建OBS桶时,需保证您的OBS桶与M
session = Session() model_object_list = Model.get_model_object_list(session) model_instance = model_object_list[0] model_instance
Private Cloud)可以为您构建隔离的、用户自主配置和管理的虚拟网络环境,操作指导请参考创建虚拟私有云和子网。 创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS
Private Cloud)可以为您构建隔离的、用户自主配置和管理的虚拟网络环境,操作指导请参考创建虚拟私有云和子网。 创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS
/etc/apt/sources.list && \ sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ apt-get update
Session() predictor_object_list = Predictor.get_service_object_list(session) predictor_instance = predictor_object_list[0] predictor_instance
nsorflow/code/” 用于存储训练脚本文件。 “obs://test-modelarts/tensorflow/data/” 用于存储数据集文件。 “obs://test-modelarts/tensorflow/log/” 用于存储训练日志文件。 Step2 创建数据集并上传至OBS
创建训练作业时,“输入”支持配置训练的输入参数名称(一般设置为“data_url”),以及输入数据的存储位置,“输出”支持配置训练的输出参数名称(一般设置为“train_url”),以及输出数据的存储位置。 训练作业运行成功之后,在训练作业列表中,您可以单击作业名称,查看该作业的详情。在“
使用自定义引擎在ModelArts Standard创建模型 使用自定义引擎创建模型,用户可以通过选择自己存储在SWR服务中的镜像作为模型的引擎,指定预先存储于OBS服务中的文件目录路径作为模型包来创建模型,轻松地应对ModelArts平台预置引擎无法满足个性化诉求的场景。 自定义引擎创建模型的规范
夹。 在创建自动学习项目页面,单击数据集输入位置右侧的“”按钮,进入“数据集输入位置”对话框。 单击“新建对象存储服务(OBS)桶”,进入创建桶页面,具体请参见《对象存储服务控制台指南》中的创建桶章节。 图1 快速创建OBS桶 桶创建完成后,选择对应桶名称,单击“新建文件夹”,在
kflow工作流时不再收费。 专属资源池的费用请参考专属资源池计费项。 - - 存储资源 对象存储OBS 用于存储训练和推理的输入数据和输出结果数据。 具体费用可参见对象存储价格详情。 注意: 存储到OBS中的数据需在OBS控制台进行手动删除。如果未删除,则会按照OBS的计费规则进行持续计费。
学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的训练数据,缓解了存储资源有限的问题;另一方面,增量训练节约了重新训练中需要消耗大量算力、时间以及经济成本。 增量训练特别适用于以下情况: 数据流更
pascal_voc = PascalVoc(file_name=file_name, width=size_list[0], height=size_list[1], depth=size_list[2], voc_objects=voc_objects)
/etc/apt/sources.list /etc/apt/sources.list.bak && \ sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
spec_list = TrainingJob(session).get_train_instance_types(session) # 返回的类型为list,可按需打印查看 print(spec_list) 专属池查询 # 运行中的专属资源池列表查询 pool_list = JobClient(session)