检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用数据工程准备与处理数据集 检测数据集质量 清洗数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。
确保为后续模型训练和优化提供高质量的数据支持。 数据标注意义 数据标注在数据工程中的作用是不可忽视的。它不仅是模型训练的基础,还直接影响到训练结果的准确性与有效性。通过标注,平台帮助用户提高数据的可用性,确保数据集与业务需求高度契合。数据标注的意义主要体现在以下几个方面: 提升
Coefficient)是一个重要的统计指标,用于衡量预报系统的质量。它通过计算预报值与观测值之间的相关性来评估预报的准确性。ACC的计算涉及到预报值、观测值和气候平均值的差异,其值范围从-1到+1,值越接近+1表示预报与观测的一致性越好,值为0表示没有相关性,而负值则表示反向相关。 RQE 衡量预测值与真
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型
提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的指令或问题等信息,也可以包含其他种类的信息,如上下文、输入或示例等。您可以通过这些元素来更好地指导模型,并因此获得更好的结果。提示词主要包含以下要素:
申请试用盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间 04 AI一站式流程 通过一站式流程,完成从数据集准备、模型训练、压缩、部署到调用,全面掌握盘古大模型的开发过程。同时,结合应用开发的提示词工程、Agent应用开发,您将能够高效构建智能应用,充分释放盘古大模型的潜力,为业务创新提供强大支持。
果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 困惑度 用来衡量大语言模型预测一个语言样本的能力,数值越低,准确率也就越高,表明模型性能越好。 指标看板 bleu-1:模型
选择数据集中已发布的数据集,这里数据集需为再分析类型数据,同时需要完成加工作业。 模型数据配置 深海层深 海深层深是指海洋模型将整个水柱(从海面到海底)按一定深度间隔划分成多个层次,每个深度值代表模型在这个深度层进行计算和模拟。例如,"0m"代表海平面,"6m"代表在海平面以下6米处的