检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Tensorflow和Caffe框架的模型格式转换为MindSpore的模型格式,即模型后缀为.om,使之能在昇腾硬件中进行推理。由于产品演进规划,后续昇腾硬件推理时主要使用后缀为.mindir的模型格式,因此ModelArts下线.om格式的模型转换能力,在ModelArts中逐步增加
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
scope参数定义了Token的作用域,示例中获取的Token仅能访问project下的资源。Modelarts使用区域的Endpoint(非全局域名)调用该接口,推荐您将scope设置为project。您还可以设置Token作用域为某个账号下所有资源或账号的某个project下的资源,详细定义请参见获取用户Token。
资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在镜像详情页,选择“镜像介绍”页签,单击右侧“编辑介绍”。 编辑镜像基础设置和镜像描述。 表1 镜像介绍的参数说明 参数名称 说明 基础设置 中文名称 显示镜像的名称,不可编辑。 README
从本地上传数据到ModelArts数据集 前提条件 已存在创建完成的数据集。 创建一个空的OBS桶,OBS桶与ModelArts在同一区域,并确保用户具有OBS桶的操作权限。 本地上传 文件型和表格型数据均支持从本地上传。从本地上传的数据存储在OBS目录中,请先提前创建OBS桶。 从本地上传的数据单次最多支持100个文件同时上传,总大小不超过5GB。
正式下线后,用户将无法再使用旧版自动学习的功能,且无法找回旧版自动学习的作业记录。 如您有任何问题,可随时通过工单或者服务热线(4000-955-988或950808)与我们联系。 常见问题 为什么要下线旧版自动学习? ModelArts自动学习是帮助用户实现AI应用的低门槛、高灵活、零代码的定制化模型开发
等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。 使用流程 本节主要介绍在AI Gallery中管理资产的整体流程。 在AI
列单击“启动IPv6”,如图3 打通VPC前,需要保证ModelArts网络和您的VPC网络都已开启IPv6,IPv6才会生效。若是打通VPC后,才开启ModelArts网络的IPv6或VPC网络的IPv6,此时需要重新打通VPC及子网,IPv6才会生效。 图2 创建网络 图3 启动IPv6
查询数据集的标注任务列表 查询当前数据集的所有标注任务列表。 dataset.get_label_tasks(is_workforce_task=False, **kwargs) 示例代码 示例一:查询数据集下所有的标注任务,根据标注任务创建时间降序排序。 from modelarts
如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。 减慢创建文件的速度。 关闭ext4文件系统的dir_index属性,具体可参考:https://access.redhat
创建镜像资产 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“镜像”。 在“创建镜像”弹窗中配置参数,单击“创建”。 表1 创建镜像 参数名称 说明 英文名称 必填项,镜像的英文名称。 如果没有填写“中文名称”,则资产发
pipe”。 OBS其他问题。 请参考OBS服务端错误码或者采集request id后向OBS客服进行咨询。 如果是空间不足。 参考 常见的磁盘空间不足的问题和解决办法章节处理。 父主题: 云上迁移适配故障
导出ModelArts数据集中的数据到OBS 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,当需要将数据集中的数据存储至OBS用于后续导出使用时,可通过此种方式导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。
User:用户名,例如:ma-user - HostName:IP地址 - Port:端口号 在VS Code中手工配置远程连接时,在本地的ssh config文件中增加配置参数“StrictHostKeyChecking no”和“UserKnownHostsFile=/dev/null”
产品优势 ModelArts服务具有以下产品优势。 稳定安全的算力底座,极快至简的模型训练 支持万节点计算集群管理 大规模分布式训练能力,加速大模型研发 提供高性价比国产算力 多年软硬件经验沉淀,AI场景极致优化 加速套件,训练、推理、数据访问多维度加速 一站式端到端生产工具链,一致性开发体验
SSE主要解决了客户端与服务器之间的单向实时通信需求(例如ChatGPT回答的流式输出),相较于WebSocket(双向实时),它更加轻量级且易于实现。 前提条件 在线服务中的模型导入选择的镜像需支持SSE协议。 约束与限制 SSE协议只支持部署在线服务。 只支持自定义镜像导入模型部署的在线服务。 调
User:用户名,例如:ma-user - HostName:IP地址 - Port:端口号 在VS Code中手工配置远程连接时,在本地的ssh config文件中增加配置参数“StrictHostKeyChecking no”和“UserKnownHostsFile=/dev/null”
训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应表1表格中output_dir参数值路径下的trainer_log.jsonl文件 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。
value 否 Long 付费工作流可使用的时间值。 响应参数 状态码: 201 表4 响应Body参数 参数 参数类型 描述 result String 认证结果。 请求示例 对在线服务进行鉴权。设置付费工作流计费周期为“day”,付费工作流可使用的时间为“100”。 POST htt