检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String 版本名称,必须是中文、字母、数字、下划线或中划线组成的合法字符串,长度为1-32位。 version_format 否 String 数据集版本格式。可选值如下: Default:默认格式 label_task_type 否 Integer 版本数据对应的标注类型。可选值如下:
处理后删除的图片数量。 description String 数据处理任务的版本描述。 duration_seconds Integer 数据处理任务的运行时间,单位秒。 inputs Array of ProcessorDataSource objects 数据处理任务的输入通道。
删除数据集版本 删除数据集的指定版本。 dataset.delete_version(version_id) 示例代码 删除数据集指定版本 from modelarts.session import Session from modelarts.dataset import Dataset
如何定位Workflow运行报错 使用run模式运行工作流报错时,分析解决思路如下: 确认安装的SDK包是否是最新版本,避免出现包版本不一致问题。 检查编写的SDK代码是否符合规范,具体可参考相应的代码示例。 检查运行过程中输入的内容是否正确,格式是否与提示信息中要求的一致。 根据具体报
sm_70'”。 原因:训练作业使用的镜像CUDA版本只支持sm_37、sm_50、sm_60和sm_70的加速卡,不支持sm_80。 处理建议:使用自定义镜像创建训练作业,并安装高版本的cuda以及对应的PyTorch版本。 查看训练作业的“日志”,出现报错“ERROR:root:label_map
查询数据集版本列表 查询数据集的版本列表。 dataset.list_versions() 示例代码 查询数据集版本列表 from modelarts.session import Session from modelarts.dataset import Dataset session
如何在ModelArts的Notebook的CodeLab上安装依赖? ModelArts CodeLab中已安装Jupyter、Python程序包等多种环境,您也可以使用pip install在Notebook或Terminal中安装依赖包。 在Notebook中安装 在总览页面进入CodeLab。
create_time Long 训练作业的创建时间,时间戳格式。 version_id Long 训练作业的版本ID。 version_name String 训练作业的版本名称。 请求示例 如下以创建“job_id”为10,“pre_version_id”为20的一个新版本作业为例。 POST
signed_new_source String 签名后的处理后样本地址。 signed_origin_source String 签名后的原样本地址。 version_id String 数据处理任务的版本ID。 请求示例 查询数据处理任务版本的结果展示 GET https://{endpoint}/
ModelArts数据集新建的版本找不到怎么办? 版本列表是可以缩放的,请缩小页面后查找。 单击数据集名称,进入数据集概览页,在概览页选择“版本管理”,可对页面进行缩小。 父主题: Standard数据准备
训练场景主要查看自研的依赖包是否正常,查看pip list是否包含所需的包,查看容器直接调用的python是否是自己所需要的那个(如果容器镜像装了多个python,需要设置python路径的环境变量)。 测试训练启动脚本。 优先使用手工进行数据复制的工作并验证 一般在镜像里不包含训练所用的数据和
使用AWQ或SQ压缩后的模型新增版本时,权重校验失败 问题现象 使用AWQ或SQ压缩后的模型新增版本时,开启权重校验功能,权重校验失败。 原因分析 平台暂不支持压缩后的模型进行权重校验。 问题影响 压缩后的模型无法使用权重检验。 处理方法 模型压缩后,不建议进行权重校验。 父主题:
variable 'epoch'” 使用订阅算法训练结束后没有显示模型评估结果 创建训练任务并成功运行, 但是发布到至AI Gallery时, 版本那块显示状态异常 使用python3.6-torch1.4版本镜像环境安装MMCV报错 父主题: 训练作业
创建Workflow数据集版本发布节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的版本自动发布的功能。数据集版本发布节点主要用于将已存在的数据集或者标注任务进行版本发布,每个版本相当于数据的一个快照,可用于后续的数据溯源。主要应用场景如下: 对于数据标注这
如何将Ubuntu20.04内核版本从低版本升级至5.4.0-144-generic? 场景描述 Ubuntu20.04内核版本从低版本升级至5.4.0-144-generic。 操作指导 检查当前内核版本。 uname -r 升级内核 apt-get install linux-headers-5
表示配置模型推理代码需要的依赖包,需要提供依赖包名、安装方式和版本约束的信息,详细参数见模型配置文件编写说明。导入模型时,模型配置文件中的安装包依赖参数“dependencies”如何编写? 解决方案 安装包存在前后依赖关系。例如您在安装“mmcv-full”之前,需要完成“Cy
训练场景主要查看自研的依赖包是否正常,查看pip list是否包含所需的包,查看容器直接调用的python是否是自己所需要的那个(如果容器镜像装了多个python,需要设置python路径的环境变量)。 测试训练启动脚本。 优先使用手工进行数据复制的工作并验证 一般在镜像里不包含训练所用的数据和
出现该问题的可能原因如下: 新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。 重装torch等,需要注意选择与上一步版本相匹配的版本。
Boolean 是否为数据集当前版本。可选值如下: true:数据集当前版本 false:非数据集当前版本 label_stats Array of LabelStats objects 发布版本的各标签统计信息列表。 label_type String 发布版本的标签类型。可选值如下: multi:表示含有多标签样本
ModelArts的自定义镜像软件版本匹配有哪些注意事项? 如果您的自定义镜像涉及NCCL、CUDA、OFED等软件库,当您制作自定义镜像时,您需要确保镜像中的软件库和ModelArts的软件库相匹配。您镜像中的软件版本需要满足以下要求: NCCL版本 ≥ 2.7.8。 OFED版本 ≥ MLNX_OFED_LINUX-5