检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
参数类型 说明 spec_id Long 资源规格的ID。 core String 资源规格的核数。 cpu String 资源规格CPU内存。 gpu_num Integer 资源规格GPU的个数。 gpu_type String 资源规格GPU的类型。 spec_code String
请勿打印无用的audio日志文件,这会导致系统日志卡死,无法正常显示日志,可能会出现“Failed to load audio”的报错。 升级为WebSocket 是否升级为WebSocket服务。 您可以进入在线服务的详情页面,通过切换页签查看更多详细信息,详情说明请参见表2。 表2 在线服务详情
自动切分、thread/block映射、依赖分析和数据搬移等。 后端优化: 后端优化模块的优化主要包括TensorCore使能、双缓冲区、内存展开和同步指令插入等。 性能分析工具 msprof命令行工具提供了采集通用命令以及AI任务运行性能数据、昇腾AI处理器系统数据、Host侧
启动全量推理实例:必须为NPU实例,用于启动全量推理服务,负责输入的全量推理。全量推理占用至少1个容器。 步骤七 启动增量推理实例:必须为NPU实例,用于启动增量推理服务,负责输入的增量推理。增量推理占用至少1个容器。 步骤八 启动scheduler实例:可为CPU实例,用于启动api
在解压大量文件可能会出现此情况并造成节点重启。可以适当在解压大量文件时,加入sleep。比如每解压1w个文件,就停止1s。 存储限制 根据规格情况合理使用数据盘,数据盘大小请参考训练环境中不同规格资源大小。 CPU过载 减少线程数。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查:
"exec format error" 常见场景为使用自定义镜像创建作业时选择的资源类型和规格错误。例如,自定义镜像是ARM CPU架构,应选用NPU规格的资源,却使用X86 CPU/X86 GPU规格的资源。 父主题: 训练作业运行失败
启动全量推理实例:必须为NPU实例,用于启动全量推理服务,负责输入的全量推理。全量推理占用至少1个容器。 步骤七 启动增量推理实例:必须为NPU实例,用于启动增量推理服务,负责输入的增量推理。增量推理占用至少1个容器。 步骤八 启动scheduler实例:可为CPU实例,用于启动api
MaaS服务只支持使用驱动版本是23.0.5的专属资源池,其他版本会导致任务失败。当专属资源池的驱动版本不适配时,可以参考升级Standard专属资源池驱动升级驱动。 公共资源池:公共资源池提供公共的大规模计算集群,根据用户作业参数分配使用,资源按作业隔离。MaaS服务可以使用ModelArts
启动推理服务之前检查卡是否被占用、端口是否被占用,是否有对应运行的进程 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。启动后容器默认端口是8080。
代码中ModelLink、MindSpeed已升级到最新版本,Python三方依赖版本已升级,其中: MindSpeed的版本升级到commitID=4ea42a23 ModelLink的版本升级到commitID=8f50777 transformers版本升级到4.45.0 peft版本升级到0.12.0 支持的模型列表
代码中ModelLink、MindSpeed已升级到最新版本,Python三方依赖版本已升级,其中: MindSpeed的版本升级到commitID=4ea42a23 ModelLink的版本升级到commitID=8f50777 transformers版本升级到4.45.0 peft版本升级到0.12.0 支持的模型列表
断的位置接续训练,加载中断生成的checkpoint,中间不需要改动任何参数。可以通过训练脚本中的SAVE_INTERVAL参数来指定间隔多少step保存checkpoint。 如果要使用自动重启功能,资源规格必须选择八卡规格,设置变量MA_TRAIN_AUTO_RESUME为True的前提下,默认为Fasle。
断的位置接续训练,加载中断生成的checkpoint,中间不需要改动任何参数。可以通过训练脚本中的SAVE_INTERVAL参数来指定间隔多少step保存checkpoint。 如果要使用自动重启功能,资源规格必须选择八卡规格,设置变量MA_TRAIN_AUTO_RESUME为True的前提下,默认为Fasle。
必须大于0,不配置默认值为1。当小于1时,代表滚动升级时增加的实例数的百分比;当大于1时,代表滚动升级时最大扩容的实例数。 max_unavailable Float 必须大于0,不配置默认值为0。当小于1时,代表滚动升级时允许缩容的实例数的百分比;当大于1时,代表滚动升级时允许缩容的实例数。 ter
需要选择填写以下两个参数,其他参数均为默认值,保持不变。 计算节点规格:根据您的实际需求选择相应的规格。 是否自动停止:为避免资源浪费,建议打开自动停止开关,根据您的实际需要,选择自动停止时间,也可以自定义自动停止的时间。 图3 选择计算节点规格 图4 设置自动停止 参数填写完毕之后,单击运行状
FASP (Fast and Accurate Structured Pruning) 一种针对LLM进行结构化剪枝的算法,可以减少大模型对于内存和计算资源的需求,提升推理速度,同时其具备比较高的剪枝速度。使用FASP对大模型进行稀疏化剪枝,可以在几乎不影响推理精度情况下,可以有效提升推理性能(吞吐等)。
FASP (Fast and Accurate Structured Pruning) 一种针对LLM进行结构化剪枝的算法,可以减少大模型对于内存和计算资源的需求,提升推理速度,同时其具备比较高的剪枝速度。使用FASP对大模型进行稀疏化剪枝,可以在几乎不影响推理精度情况下,可以有效提升推理性能(吞吐等)。
${image_name} 为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker
查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/
查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/