检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用ma-cli obs-copy命令复制OBS数据 使用ma-cli obs-copy [SRC] [DST]可以实现本地和OBS文件或文件夹的相互复制。 $ma-cli obs-copy -h Usage: ma-cli obs-copy [OPTIONS ] SRC
Lite Server使用前必读 Lite Server使用流程 Lite Server高危操作一览表 Lite Server算力资源和镜像版本配套关系
Lite Cluster使用前必读 Lite Cluster使用流程 Lite Cluster高危操作一览表 不同机型的对应的软件配套版本
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
运行结果将存储在output文件夹中,如果用户指定了output_path,会指定位置保存,如果不指定则在当前代码执行目录生成文件夹保存输出。整体运行的结果都存放在output文件夹中,每转一次模型就会根据模型名称以及相关参数生成结果文件,如下图所示。 图3 output文件 在每次运行的结果文件中,分为三
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
重置节点后无法正常使用? 问题现象 当ModelArts Lite的CCE集群在资源池上只有一个节点,且用户设置了volcano为默认调度器时,在ModelArts侧进行重置节点的操作后,节点无法正常使用,节点上的POD会调度失败。 原因分析 在ModelArts侧进行节点重置后
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
e的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 examples/fp8/extract_scales
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
1、执行权重量化过程中,请保证使用的GPU卡上没有其他进程,否则可能出现OOM; 2、若量化Deepseek-v2-236b模型,大致需要10+小时。 使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。
1、执行权重量化过程中,请保证使用的GPU卡上没有其他进程,否则可能出现OOM; 2、如果量化Deepseek-v2-236b模型,大致需要10+小时。 使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。
部署上线。具体操作步骤如下。 在“运行节点”页面中,待训练状态变为“等待输入”,双击“服务部署”节点,完成相关参数配置。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。
的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。 训练完成后,您可以在预测分析节点中单击查看训练详情,如“
户只需要专注于本地的代码开发即可。 本章节介绍如何使用PyCharm ToolKit插件创建训练作业并调试。 前提条件 Step1 下载并安装PyCharm ToolKit。 在本地PyCharm中已有训练代码工程。 已在OBS中创建桶和文件夹,用于存放数据集和训练输出模型。 例
kv-cache-int8量化支持的模型请参见表1。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
e的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 examples/fp8/extract_scales
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc