检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
先标注视频中的“大类别”(如“动物”),然后根据该大类别进一步细分为多个子类。这种方式可以更精细地表示视频中涉及的不同对象或情境。 图2 多层级分类示例-声音分类 文本描述:如图3,文本描述允许标注者以文字的形式为视频片段提供更详细的说明或描述。该描述不仅可以包含视频中的内容信息
在右侧“清洗步骤编排”页面配置各算子参数,可拖动右侧“”以调整算子执行顺序。 图1 算子编排 在编排过程中,可单击右上角“保存为新模板”将当前编排流程保存为模板。后续创建新的数据清洗任务时,可直接单击“选择加工模板”进行使用。 若选择使用加工模板,将删除当前已编排的清洗步骤。 图2 选择加工模板 清洗步骤编排完
集流通操作。 当任务状态显示为“运行成功”时,说明数据流通任务执行成功,生成的“发布数据集”可在“数据工程 > 数据发布 > 发布数据集”中查看。 父主题: 发布视频类数据集
行成功后,状态将显示为“运行成功”。 单击操作列“生成”,将生成“发布数据集”。 发布数据集可在“数据工程 > 数据发布 > 发布数据集”中查看。 通过数据配比功能生成的“发布数据集”,其格式为“默认格式”。 父主题: 发布文本类数据集
Studio大模型开发平台针对图片类数据集预设了一套基础评估标准,涵盖了图像清晰度、分辨率、标签准确性、图像一致性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建图片类数据集评估任务。 创建图片类数据集评估标准步骤如下: 登录ModelArts
气象类清洗算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类清洗算子能力清单
当数据合成任务运行成功后,状态将从“运行中”变为“运行成功”,表示数据已经完成合成操作。 在完成数据合成后,若无需使用数据标注功能,可直接在“数据合成”页面单击操作列“生成”,生成加工数据集。 加工数据集列表可在“数据工程 > 数据加工 > 加工数据集”中查看。 创建自定义数据合成指令 平台支持用户创建自定义数据合成指令。
直至所有数据审核完成。 审核过程中可开启“标注前后对比”功能,查看当前数据标注前后的内容。 在完成数据标注审核后,需在“数据标注 > 任务管理”页面单击“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 父主题: 加工文本类数据集
直至所有数据审核完成。 审核过程中可开启“标注前后对比”功能,查看当前数据标注前后的内容。 在完成数据标注审核后,需在“数据标注 > 任务管理”页面单击“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 父主题: 加工图片类数据集
在右侧“清洗步骤编排”页面配置各算子参数,可拖动右侧“”以调整算子执行顺序。 图1 算子编排 在编排过程中,可单击右上角“保存为新模板”将当前编排流程保存为模板。后续创建新的数据清洗任务时,可直接单击“选择加工模板”进行使用。 若选择使用加工模板,将删除当前已编排的清洗步骤。 图2 选择加工模板 清洗步骤编排完
行成功后,状态将显示为“运行成功”。 单击操作列“生成”,将生成“发布数据集”。 发布数据集可在“数据工程 > 数据发布 > 发布数据集”中查看。 通过数据配比功能生成的“发布数据集”,其格式为“默认格式”。 父主题: 发布图片类数据集
平台提供了图文类、图片类清洗算子,算子能力清单见表1。 表1 图片类清洗算子能力清单 算子分类 算子名称 算子描述 数据提取 图文提取 提取图文压缩包中的JSON文本和图片,并对图片进行结构化解析(BASE64编码)。 数据过滤 图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。
平台支持发布不同格式的数据集。 当前支持默认格式、盘古格式: 默认格式:数据工程功能支持的原始格式。 盘古格式:使用盘古大模型训练时所需要使用的数据格式。 如果使用该数据集训练盘古大模型,请将发布格式配置为盘古格式。 填写数据集名称、描述,设置数据集“资产可见性”,设置扩展信息后,单击“确定”执行数据集流通操作。
表面Loss。取值范围:(0.05, 10)。 正则化参数 路径删除概率 用于定义路径删除机制中的删除概率。路径删除是一种正则化技术,它在训练过程中随机删除一部分的网络连接,以防止模型过拟合。这个值越大,删除的路径越多,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1)。
无需鉴权:不使用鉴权时会存在安全风险。 用户级鉴权:通过验证用户身份来控制对个人数据的访问,通常使用Header或Query中的密钥参数(如Token)进行鉴权,适用于需要权限控制的场景,安全性较高。 API Key鉴权:通过唯一的API Key来认证应用之间的访问权限,可以使用Hea
是 List<String> 待统计Token数的字符串。List长度必须为奇数。 with_prompt 否 Boolean 是否仅统计输入字符的Token数 true:仅统计输入字符串的Token数; false:统计输入字符串和推理过程产生字符的总Token数。 响应参数 表4
"好的,以下是修改后的xxxx"} 多轮问答场景的输入(“context”字段)请务必使用“[问题, 回答, 问题, 回答, 问题, ……]”的方式来构造,若您的数据是同一个角色连续多次对话的“多轮问题”,可以将同一个角色的对话采用某个分隔符拼接到一个字符串中。例如: 原始对话示例: A:xxx号话务员为您服务!
类别特征列 指定使用LabelEncoder处理的字符串类型类别特征的列表。格式为["列名1","列名2"],默认设置为[],表示没有需要处理的类别特征。 LabelEncoder的作用是将类别特征转换为数值型特征,使模型能够处理这些特征。 非特征列 列出不需要输入到模型中的特征列,用
注意在输出参数中定义res 'res': "输入字符串满足要求" } else: return { # 注意在输出参数中定义res 'res': "输入字符串不满足要求" } 数学计算示例代码。 def main(args: dict) -> dict: # 注意在输入参数中定义名为input1的变量
m。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content表示对话的内容,可以是任意文本。 messages参数可以帮助模型根据对话的上下文生成合适的回复。 数组长度:1 - 20 user 否 String 用于代表用户的唯一标识符,字符串长度最大64,最小1。