检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
类型,每个任务产生的费用详细。您可以单击“操作 > 详情”,查看使用量详情。可拖动详情下方的进度条,查看“使用量”、“应付金额”等信息。 图1 流水账单 在“明细账单”列表页,罗列了该账号下各种资源的计费模式、使用量和单价等信息。可以按账期、统计维度和统计周期筛选查看明细账单。 图2
本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。
资源池监控 功能介绍 获取资源池的监控信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/pools/{pool_name}/monitor
本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendFactory训练代码。 准备镜像 准备训练模型适用的容器镜像。
本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。
Query参数 参数 是否必选 参数类型 描述 status 否 Integer 数据集版本状态。可选值如下: 0:创建中 1:运行中 2:删除中 3:已删除 4:错误 train_evaluate_ratio 否 String 根据版本切分比例筛选版本。根据逗号分隔最小和最大切
parquet 如果在准备数据章节已下载数据集,此处无需重复操作。 SFT全参微调和LoRA微调训练使用的是同一个数据集,数据处理一次即可,训练时可以共用。 数据预处理说明 使用数据预处理脚本preprocess_data.py脚本重新生成.bin和.idx格式的SFT全参微调数据。preprocess_data
支持。 约束限制 本文档适配昇腾云ModelArts 6.3.906版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 本文档中的模型运行环境是ModelArts Lite Server。 镜像适配的Cann版本是cann_8.0.rc2。 确保容器可以访问公网。
当前任务是否是该版本的同类型任务中的最新任务。 name String 数据处理任务名称。 result Object 数据处理任务输出的结果,status为2时会出现该字段,用于特征分析任务。 status Integer 数据处理的状态。可选值如下: 0:初始化 1:运行中 2:已完成 3:失败
证,管理员可以获取所有API的授权信息,普通用户只能获取自己有访问权限的服务下的API的授权信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
String 用途,可选值为TRAIN、EVAL、TEST、INFERENCE。指明该对象用于训练、评估、测试、推理,如果没有给出该字段,则使用者自行决定如何使用该对象。 inference_loc String 当此Manifest文件由推理服务生成时会有该字段,表示推理输出的结果文件位置。
在解压大量文件可能会出现此情况并造成节点重启。可以适当在解压大量文件时,加入sleep。比如每解压1w个文件,就停止1s。 存储限制 根据规格情况合理使用数据盘,数据盘大小请参考训练环境中不同规格资源大小。 CPU过载 减少线程数。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查:
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)
训练。 多种资源形态 集群模式,开箱即提供好Kubernetes集群,直接使用,方便高效。 节点模式,客户可采用开源或自研框架,自行构建集群,更强的掌控力和灵活性。 零改造迁移 提供业界通用的k8s接口使用资源,业务跨云迁移无压力。 SSH直达节点和容器,一致体验。
辑 1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 更多查看训练日志和性能操作,请参考查看日志和性能章节。 如果需要使用断点续训练能力,请参考断点续训练章节修改训练脚本。 父主题: 预训练
这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。 ModelArts通过对DB的数据进行备份,保证在原数据被破坏或损坏的情况下可以恢复业务。
本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendFactory训练代码。 准备镜像 准备训练模型适用的容器镜像。
GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。 GeneralInstructionHandler:用于sft、lora微调时的数据预处理过程中,会对数据集full_prompt中的user_prompt进行mask操作。 --seq-length:要处理的最大seq