检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
到两次作业之间的差值,从而推算出实际taxpay和water_fee。 开启空间中的差分隐私开关保护敏感数据,符合差分隐私条件的统计作业,会自动应用差分隐私算法对计算结果进行加噪保护, 在一定误差范围内保证数据无法被恶意偷取。 图1 差分隐私开关 第一次执行作业的结果如下: 图2
查询空间已注册数据集列表 功能介绍 功能描述:用户可以使用该接口查询空间已注册数据集列表。 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/datasets 表1 路径参数 参数 是否必选 参数类型 描述
多方安全计算作业在TICS中进行解析和任务计划构建,并下发任务给各个数据参与方所在的计算节点。 参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的服务器中进行机密计算。 最终将计算完成的结果加密返回给作业发起方。 空间的整体配置通过空间管理员进行统一管理。
可验证代码示例 数据准备 数据集发布 隐私规则防护 基本计算能力验证 基于MPC算法的高安全级别计算 统计型作业的差分隐私保护 父主题: 多方安全计算场景
外部数据共享 场景描述 准备数据 发布数据集 创建实时隐匿查询作业 执行实时隐匿查询作业 父主题: 实时隐匿查询场景
测试步骤 数据准备 训练型横向联邦作业流程 评估型横向联邦作业流程 父主题: 横向联邦学习场景
殊符号不包括?!.*?_$ 长度0-128 data_type String 连接器数据类型 1.RDS--云数据库类型 2.MYSQL--MySQL类型 3.DWS--高斯数据库类型 4.MRS--MapReduce数据类型 5.ORACLE--ORACLE数据类型 6.LOCAL_CSV--本地数据类型
数据拥有方公司A同意数据需求方公司B的数据使用申请后,可以由公司A创建合约,合约是需要双方同意的数据使用证明。 合约内容包括:合约名称、合约描述、数据信息、公司B的访问需求、访问限制和自定义限制。其中数据信息、公司B的访问需求来自于公司B的数据使用申请,合约名称、合约描述、访问限制和自定义限制由公司A在创建合约时定义。
隐私求交黑名单共享场景 场景描述 准备数据 发布数据集 创建并运行隐私求交作业 查看求交结果 父主题: 使用场景
data_source String 数据库名称 table_name String 表名称 data_type String 连接器类型1.MRS,2.DLI,3.OBS,4.MODEL_ARTS,5.LOCAL_TENSOR_FLOW,6.MYSQL,7.RDS_MYSQL data_pub_status
场景描述 数据商业空间中公司B针对公司A的某些数据资产存在业务需求,由于安全性和数据主权的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。
连接器类型,主要分为多方安全计算连接器和可信联邦学习连接器。 多方安全计算连接器 MRS, RDS_MYSQL, DWS, JDBC, MYSQL, ORACLE, 可信联邦学习连接器 LOCAL 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token
创建数据 数据拥有方公司A创建和发布数据集。可供选择有两种数据资产类型:结构化数据集、非结构化数据集。创建数据集后,发布数据集,此时对空间内的所有代理可见。 父主题: 可信数据交换场景
8839 5893 0.8 11785 2947 下图为当Host方拥有不同数据量时,使用横向联邦对比己方独立训练的性能对比。 图1 Host方拥有不同数据量时,横向联邦对比对立训练的模型性能 结论为:使用横向联邦学习,在己方拥有不同数据量的情况下都可以显著提升模型性能。 父主题: 实验结果
"subnet_id" : "9cc4bdd1-ad35-4d0f-849c-71d305121f61" } } 父主题: 使用前必读
不想暴露给企业B自己查询的用户id,因为查询该用户的信息隐含着“该用户是企业A的客户”的信息,存在用户隐私泄露的风险。 企业A和企业B可以使用TICS服务的实时隐匿查询功能,既能满足实时业务高效低延迟的业务需求,又能避免暴露企业A想要查询哪个用户的隐私安全风险。 父主题: 外部数据共享
准备数据 A方提供了待查询的用户ID数据,样例如下: blacklist_query.csv id 1914fd1aef9346e7a1b0a63c95aa918e 6b86b273ff34fce19d6b804eff5a3f57 66985617b4f74d14b4eceeaa25d61f5e
场景描述 有效的风险控制能够消灭或减少风险事件发生的各种可能性,或减少风险事件发生时造成的损失,对于企业具有重要意义。现阶段,企业级的单方风控体系已逐步建立,在机构内数据统一共享的基础上实现了覆盖业务前、中、后各环节的智能风控。然而,单方数据风控面临存在数据不全面、风控不及时的问
准备数据 企业A的实时业务不需要准备数据,在发起查询时通过参数传递需要查询的用户id。 表1 企业B用户画像数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 f0-f4 float 用户数据画像特征 bigdata_all.csv id,f0,f1,f2
连接器”或者“关系型数据库连接器”。 本地连接器:在弹出的界面选择本地连接器(localConnector),选择“结构化”数据类型,再配置创建数据的参数,配置完成后单击“确定”。 关系型数据库连接器:在弹出的界面选择关系型数据库连接器,例如RDS、MYSQL、DWS、HIVE等